YALE UNIVERSITY DEPARTMENT OF MATHEMATICS Math 350 Introduction to Abstract Algebra Fall 2017

Problem Set # 5 (due at the beginning of class on Friday 13 October)

Notation: If G is a group then the set of automorphisms, i.e., isomorphisms $\varphi : G \to G$, is a group under composition called the **automorphism group** of G and denoted Aut(G). For every $g \in G$, conjugation by g is an automorphism of G, and all these conjugation automorphisms form a subgroup of Aut(G) called the **inner automorphism group** of G and denoted Inn(G).

By the "isomorphism type" of a group, we mean all groups that are isomorphic to that group. By "identify the isomorphism type" of a group G, we mean "give another group that is friendly to you, whose name you know, that is isomorphic to G". I know this sounds like a vague notion, but it is quite helpful. For example, "cyclic of order n", "Klein four", " S_n " are all descriptions of isomorphism types of groups.

Reading: DF 3.3, 3.4, 4.1, 4.2, 4.4.

Problems:

1. DF 3.3 Exercises 2, 3, 6^{*}, 7^{*} (note that in particular, if also $M \cap N = \{e\}$ then $G \cong M \times N$ and we say that G is the **internal direct product** of M and N), 8, 9^{*}.

2. DF 3.5 Exercises 10^* (A_4 is the subgroup of S_4 generated by 3-cycles).

3. DF 3.4 Exercises 2, 4*, 7, 8* (Hint: in (i), use the definition of solvable given in DF; to prove (iii) implies (iv), use the hint given in DF and not the method I was trying to give in office hours, the idea is to build up a sequence of subgroups inductively from scratch, where the hint is describing the smallest subgroup in the sequence).

4. DF 4.1 Exercises 3^{*}, 4, 6, 7^{*}, 8, 9.

5. DF 4.2 Exercises 2, 10^{*}, 11, 14.

- **6.** Finite vector spaces. Let V be an \mathbb{F}_p -vector space of (finite) dimension n.
 - (a) What is the isomorphism type of the underlying finite abelian group (V, +)?
 - (b) Show that the automorphism group $\operatorname{Aut}((V, +))$ of the abelian group (V, +) is isomorphic to the group $\operatorname{GL}(V)$ of \mathbb{F}_p -linear vector space isomorphisms $\varphi : V \to V$ and that this group is also isomorphic to $\operatorname{GL}_n(\mathbb{F}_p)$.
 - (c) Compute the order of $\operatorname{Aut}(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})$. Find an automorphism of order 7.