YALE UNIVERSITY DEPARTMENT OF MATHEMATICS Math 350 Introduction to Abstract Algebra Fall 2017

Problem Set # 6 (due at the beginning of class on October 27, have a restful Fall break!)

Reminder. On a previous problem set, you proved that the map $(\mathbb{Z}/n\mathbb{Z})^{\times} \to \operatorname{Aut}(Z_n)$, defined by $a \mapsto \phi_a$ where $\phi_a(x) = x^a$ for $x \in Z_n$, is an isomorphism.

Reading: DF 3.5, 4.3–4.5.

Problems:

1. DF 3.5 Exercises 3, 4*, 5, 6, 14, 15, 17*.

2. DF 4.3 Exercises 3, 5^{*}, 6^{*}, 8, 13, 19^{*} (you do not need to draw the lattice), 21, 22, 28^{*} (if $P \leq G$ is any subgroup, use the left multiplication action of G on the set of cosets G/P, see pp. 118–119), 29, 31, 32, 34^{*}.

3. DF 4.4 Exercises 1, 3*, 5*, 10, 11*, 18*, 19.

4. DF 4.5 Exercises 3 (only use the existence of Sylow *p*-subgroups), 4–7, 8.

5. Let V is a vector space over a field, and recall that from the previous problem set we have an injective homomorphism $\operatorname{GL}(V) \to \operatorname{Aut}(V, +)$ that is an isomorphism when the field is \mathbb{F}_p . Now let V be a 2-dimensional vector space over the field \mathbb{F}_4 , and prove that $\operatorname{GL}(V) \to \operatorname{Aut}(V, +)$ is not surjective. Hint: Calculate the orders of $\operatorname{GL}(V)$ and $\operatorname{Aut}(V, +)$.

6. Let g_1, \ldots, g_r be a set of representatives of all conjugacy classes (including central ones) of a finite group G. Then the equation $|G| = |\mathcal{K}_{g_1}| + \cdots + |\mathcal{K}_{g_r}|$ transforms, after dividing both sides by |G|, into an Egyptian fraction

$$1 = \frac{1}{|C_G(g_1)|} + \dots + \frac{1}{|C_G(g_r)|}$$

For example, the group S_3 gives $1 = \frac{1}{6} + \frac{1}{3} + \frac{1}{2}$. For each of the following Egyptian fractions, determine if it arises from a finite group G. If so, write G; if not, explain why not.

(a)
$$1 = \frac{1}{3} + \frac{1}{3} + \frac{1}{3}$$

(b) $1 = \frac{1}{4} + \frac{1}{4} + \frac{1}{2}$
(c) $1 = \frac{1}{6} + \frac{1}{4} + \frac{1}{4} + \frac{1}{3}$
(d) $1 = \frac{1}{8} + \frac{1}{8} + \frac{1}{4} + \frac{1}{2}$
(e) $1 = \frac{1}{8} + \frac{1}{8} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4}$
(f) $1 = \frac{1}{12} + \frac{1}{4} + \frac{1}{3} + \frac{1}{3}$
(g) $1 = \frac{1}{12} + \frac{1}{12} + \frac{1}{6} + \frac{1}{6} + \frac{1}{4} + \frac{1}{4}$
(h) $1 = \frac{1}{24} + \frac{1}{8} + \frac{1}{4} + \frac{1}{4} + \frac{1}{3}$

YALE UNIVERSITY, DEPARTMENT OF MATHEMATICS, 10 HILLHOUSE AVE, NEW HAVEN, CT 06511 *E-mail address:* asher.auel@yale.edu