Yale University Department of Mathematics
Math 350 Introduction to Abstract Algebra
Fall 2017
Problem Set \# 6 (due at the beginning of class on October 27, have a restful Fall break!)
Reminder. On a previous problem set, you proved that the map $(\mathbb{Z} / n \mathbb{Z})^{\times} \rightarrow \operatorname{Aut}\left(Z_{n}\right)$, defined by $a \mapsto \phi_{a}$ where $\phi_{a}(x)=x^{a}$ for $x \in Z_{n}$, is an isomorphism.

Reading: DF 3.5, 4.3-4.5.

Problems:

1. DF 3.5 Exercises $3,4^{*}, 5,6,14,15,17^{*}$.
2. DF 4.3 Exercises $3,5^{*}, 6^{*}, 8,13,19^{*}$ (you do not need to draw the lattice), 21, 22, 28* (if $P \leqslant G$ is any subgroup, use the left multiplication action of G on the set of cosets G / P, see pp. 118-119), 29, 31, 32, 34*.
3. DF 4.4 Exercises $1,3^{*}, 5^{*}, 10,11^{*}, 18^{*}, 19$.
4. DF 4.5 Exercises 3 (only use the existence of Sylow p-subgroups), 4-7, 8 .
5. Let V is a vector space over a field, and recall that from the previous problem set we have an injective homomorphism $\mathrm{GL}(V) \rightarrow \operatorname{Aut}(V,+)$ that is an isomorphism when the field is \mathbb{F}_{p}. Now let V be a 2-dimensional vector space over the field \mathbb{F}_{4}, and prove that $\operatorname{GL}(V) \rightarrow \operatorname{Aut}(V,+)$ is not surjective. Hint: Calculate the orders of $\mathrm{GL}(V)$ and $\operatorname{Aut}(V,+)$.
6. Let g_{1}, \ldots, g_{r} be a set of representatives of all conjugacy classes (including central ones) of a finite group G. Then the equation $|G|=\left|\mathcal{K}_{g_{1}}\right|+\cdots+\left|\mathcal{K}_{g_{r}}\right|$ transforms, after dividing both sides by $|G|$, into an Egyptian fraction

$$
1=\frac{1}{\left|C_{G}\left(g_{1}\right)\right|}+\cdots+\frac{1}{\left|C_{G}\left(g_{r}\right)\right|} .
$$

For example, the group S_{3} gives $1=\frac{1}{6}+\frac{1}{3}+\frac{1}{2}$. For each of the following Egyptian fractions, determine if it arises from a finite group G. If so, write G; if not, explain why not.
(a) $1=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}$
(b) $1=\frac{1}{4}+\frac{1}{4}+\frac{1}{2}$
(c) $1=\frac{1}{6}+\frac{1}{4}+\frac{1}{4}+\frac{1}{3}$
(d) $1=\frac{1}{8}+\frac{1}{8}+\frac{1}{4}+\frac{1}{2}$
(e) $1=\frac{1}{8}+\frac{1}{8}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}$
(f) $1=\frac{1}{12}+\frac{1}{4}+\frac{1}{3}+\frac{1}{3}$
(g) $1=\frac{1}{12}+\frac{1}{12}+\frac{1}{6}+\frac{1}{6}+\frac{1}{4}+\frac{1}{4}$
(h) $1=\frac{1}{24}+\frac{1}{8}+\frac{1}{4}+\frac{1}{4}+\frac{1}{3}$

