Yale University Department of Mathematics

Math 350 Introduction to Abstract Algebra

Fall 2017
Problem Set \# 7 (due at the beginning of class on November 3)
Notation: If a group G acts on a set of n elements, then the permutation representation gives a homomorphism $\rho: G \rightarrow S_{n}$. Keep this in mind!

Reading: DF 4.5, 4.6, and 5.1.

Problems:

1. DF 4.5 Exercises 18, 22, 26, 30, $34^{*}, 36^{*}, 39,40$.
2. DF 4.6 Exercise 1.
3. DF 5.1 Exercises 4, 14^{*}, 15, 17 .
4. Solvable up to sixty! Recall that A_{5}, which has order 60 , is simple. The goal of this problem is to prove that all groups of order <60 are solvable.
(\aleph) Prove that if 60 is the first order of a finite nonabelian simple group, then all groups of order <60 are solvable. Hint: Jordan-Hölder.
As the abelian simple groups are those of prime order, for each composite order $n<60$, we will try to prove that no group of order n is simple. For example, we already know that no group of order p^{α}, with $\alpha>1$, is simple and that no group of order $p q$, with p and q primes, is simple. Prove the following additional criteria on the order of a group for the group to not be simple:
(a) If G is a finite group of order $p^{k} m$, with $p \nmid m$ and $m<p$ (more generally, no divisor of m other than 1 is congruent to 1 modulo p), then G has a normal Sylow p-subgroup.
(b) If G is a finite group of order $p q r$, where p, q, and r are primes with $p<q<r$, then G has a normal Sylow subgroup for at least one of p, q, or r.
(c) If G is a finite group of order $2^{k} \cdot 3$, with $k \geq 1$, then G is not simple.
(d) If G is a finite group of order $2^{k} \cdot 5$, with $k \geq 1$, then G is not simple.
(e) If G is a finite group of order $2^{2} \cdot 3^{k}$, with $k \geq 1$, then G is not simple. For $k=1$, use part (c).
(f) If G is a finite group of order $3^{k} \cdot 5$, with $k \geq 1$, then G is not simple.

Hints: The first follows from a direct application of the congruence conditions in the Sylow theorems. For the second, assume the contrary and consider the possible number of Sylow r subgroups, then use this to count the number of elements of order r (any two Sylow r-subgroups intersect only at the identity), combine this with the number of elements of order p and q to find more elements than the order of the group. For the third and fourth, handle k small using the congruence conditions and for k large, consider the permutation representation associated to the conjugation action of G on the Sylow 2-subgroups. For the fifth and sixth, do the same using the Sylow 3 -subgroups.
(g) From the above criteria, prove that every group whose order is <60 and is neither prime nor 56 , is not simple.
(h) No group of order 56 is simple.

Hint: If neither the Sylow 2- nor 7 -subgroups are normal, start counting elements in these subgroups to reach a contradiction (while any two Sylow 7 -subgroups only intersect at the identity, how could Sylow 2-subgroups intersect?).

Great, you done! For fun, how much higher can you go using these same tools?
(i) (Optional.) What is the largest number $N>60$ you can find such that no group whose order is composite and between 61 and N is simple?

