Yale University Department of Mathematics
Math 350 Introduction to Abstract Algebra
Fall 2017
Midterm Exam Review Solutions

Practice exam questions:

2. Let $V_{1} \subset \mathbb{R}^{2}$ be the subset of all vectors whose slope is an integer. Let $V_{2} \subset \mathbb{R}^{2}$ be the subset of all vectors whose slope is a rational number. Determine if V_{1} and/or V_{2} is a subgroup of \mathbb{R}^{2}, with usual vector addition.

Solution. V_{1} contains zero (if one defines the slope of the origin to be 0), is closed under taking inverses (negation actually preserves slope), but is not closed under addition. For example, $v=(1,2)$ has slope 2 and $w=(1,1)$ has slope 1 , but $v+w=(3,2)$ has slope $3 / 2$.
V_{2} contains zero, is closed under taking inverses, but is not closed under addition. For example, $v=(1,0)$ has slope 0 and $w=(\sqrt{2}, \sqrt{2})$ has slope 1 , but $v+w$ has slope $\sqrt{2} /(1+\sqrt{2})=2-\sqrt{2}$, which is not rational.
3. Write down a nontrivial homomorphism $\varphi: \mathbb{Z} / 36 \mathbb{Z} \rightarrow \mathbb{Z} / 48 \mathbb{Z}$ and compute its image and kernel.

Solution. Since the domain is a cyclic group, we only need to specify where a generator is sent, and verify the relations. So we need to choose $\varphi(1)$ whose order divides 36 . For example, $\operatorname{gcd}(36,48)=12$, so we could choose $\varphi(1)$ to be any element of order 12 in $\mathbb{Z} / 48 \mathbb{Z}$, for example, $48 / 12=4$ has order 12 . So the choice of $\phi(1)=4$ will produce a well defined (and nontrivial) homomorphism $\varphi: \mathbb{Z} / 36 \mathbb{Z} \rightarrow \mathbb{Z} / 48 \mathbb{Z}$. The image is the cyclic subgroup $\langle 4\rangle \leqslant \mathbb{Z} / 48 \mathbb{Z}$, which is itself a cyclic group of order 12 . Since $\varphi(1)$ has order 12 , it shows that $\varphi(12)=0$ and in fact that the $\operatorname{ker}(\varphi)$ is the cyclic subgroup $\langle 12\rangle \leqslant \mathbb{Z} / 36 / \mathbb{Z}$, which is itself a cyclic group of order $36 / 12=3$. Of course, any choice of element of $\mathbb{Z} / 48 \mathbb{Z}$ whose order divides 36 would have worked, for example, $24 \in \mathbb{Z} / 48 \mathbb{Z}$ has order 2 , which gives another nontrivial example.

If there was an injective homomorphism, its image would be a subgroup of $\mathbb{Z} / 48 \mathbb{Z}$ of order 36, which cannot exist by Lagrange's theorem. No surjective homomorphism can exist because $|\mathbb{Z} / 36 \mathbb{Z}|<|\mathbb{Z} / 48 \mathbb{Z}|$.
4. How many elements of order 6 are there in S_{6} ? In A_{6} ?

Solution. Considering the disjoint cycle decomposition, and the formula for the order of a product of disjoint cycles as the lcm of the cycle lengths, the only elements of order 6 in S_{6} are the 6 -cycles or the $(2,3)$-cycles. There are 5 ! choices of 6 -cycles, indeed, a 6 -cycle must contain all numbers $1, \ldots, 6$ and we can always cyclically permute so that 1 is the first number, then there 5! distinct choices for the rest of the numbers. There are $2 \cdot\binom{6}{2}\binom{4}{3}$ choices of $(2,3)$-cycles, indeed, choosing a 2 -cycle is equivalent to choosing 2 elements out of 6 and then 3 elements out of the remaining 4 , with the understanding that for each choice there is a unique 2 -cycle and two possible 3 -cycles with those given sets of numbers. (Or you can memorize formulas in the book for the number of n-cycles in a symmetric group.) In total, there are $120+120=240$ elements of order 6 in S_{6} (which is $1 / 3$ of the elements!).

The elements of order 6 in A_{6} are the even permutations of order 6 in S_{n}. But none of them are even! So there are no elements of order 6 in A_{6} !
5. Prove that $11^{104}+1$ is divisible by 17 .

Solution. We use Euler's theorem to compute $11^{104} \bmod 17$. Since $11^{16} \equiv 1(\bmod 17)$ we reduce $104=6 \cdot 16+8 \bmod 16$, so that $11^{104} \equiv 11^{8}(\bmod 17)$. Now $11^{8}=\left(11^{2}\right)^{4}=121^{8}$, so we can simplify by reducing $121=7 \cdot 17+2 \bmod 17$, so that $11^{8} \equiv 121^{4} \equiv 2^{4} \equiv 16$ $(\bmod 17)$. Then $11^{104}+1 \equiv 16+1 \equiv 0(\bmod 17)$, implying that 11^{104} is divisible by 17 .
6. Write down two elements of S_{10} that generate a subgroup isomorphic to D_{10}. (Hint: Use the left multiplication action on D_{10}.)

Solution. If we order the elements of $D_{10}=\left\{1, r, \ldots, r^{4}, s, s r, \ldots, s r^{4}\right\}$ in the usual way, then we can compute the permutations induced the elements of D_{10} by left multiplying by r and s. We see that r corresponds to the permutation (12345)(109876) and s corresponds to the permutation $(16)(27)(38)(49)(510)$. Since the left multiplication action is always faithful, the image of its permutation representation is a subgroup of S_{10} isomorphic to D_{10} and generated by the images of r and s.
7. Consider the left regular permutation representation $S_{n} \rightarrow S_{n!}$. Describe the cycle type in $S_{n!}$ of the image of an n-cycle in S_{n}.

Solution. Let σ be an n-cycle and z any element of S_{n}. Then the cycle containing z in the permutation induced by left multiplication by σ on S_{n}, is just $\left\{z, \sigma z, \sigma^{2} z, \ldots, \sigma^{n-1} z\right\}$. Indeed, if $\sigma^{i} z=\sigma^{j} z$, then $i \equiv j(\bmod n)$. If we imagined ordering all $n!$ elements of S_{n}, then we see that σ would permute the elements as a disjoint product of n-cycles, in fact $(n-1)$! of them. In fact, the same argument shows that if σ is any element of order k in S_{n}, then the cycle type of the permutation induced by σ via left multiplication, is a product of $n!/ k$ disjoint k-cycles. This makes all permutation in S_{n} look "regular."
8. Prove that $C_{S_{n}}((12)(34))$ has $8(n-4)$! elements for $n \geq 4$ and explicitly determine all of them.

Solution. We know that the size of the conjugacy class in S_{n} containing $\sigma=(12)(34)$ is $\left[S_{n}: C_{S_{n}}((12)(34))\right]$. But we also know that this conjugacy class consists of all type $(2,2)$-cycles. We can count the number of them. Choosing a type $(2,2)$-cycle is equivalent to choosing 2 elements out of n and then 2 elements out of the remaining $n-2$, and remembering that we can switch the order of the two disjoint 2-cycles we've just chosen. So the number is $\frac{1}{2}\binom{n}{2}\binom{n-2}{2}$. Thus

$$
\left|C_{S_{n}}((12)(34))\right|=\frac{n!}{\frac{1}{2}\binom{n}{2}\binom{n-2}{2}}=8(n-4)!
$$

Explicitly, $C_{S_{n}}((12)(34))=C_{S_{4}}((12)(34)) \cdot S_{n-4}$, where S_{n-4} is the symmetric subgroup on $\{4,5, \ldots, n\}$, and $C_{S_{4}}((12)(34))=\{1,(12),(34),(12)(34),(13)(24),(14)(23),(1324),(1423)\}$.
9. Consider the action of S_{5} on the 10 subsets of $\{1,2,3,4,5\}$ of order 2. Show that this action is transitive. Write down the stabilizer of $\{4,5\}$ explicitly as a subgroup of S_{5} and then determine its isomorphism type (first start by computing its order).

Solution. If I want to send $\{a, b\}$ to $\{c, d\}$ then $\sigma=(a c)(b d)$ works unless the subsets share a common value, in which case to send $\{a, b\}$ to $\{a, c\}$ then $\sigma=(b c)$ works. So the action is transitive. The stabilizer of $\{4,5\}$ is the subgroup generated by all permutations involving only $1,2,3$ and also the permutation (45). So this subgroup has elements:

$$
e,(12),(13),(23),(123),(132),(45),(12)(45),(13)(45),(23)(45),(123)(45),(132)(45)
$$

I claim this subgroup has the isomorphism type $S_{3} \times Z_{2}$, where Z_{2} is the cyclic group of order 2. The homomorphism I'll try to define $f: S_{3} \times Z_{2}$ takes any permutation in S_{3} to itself, and send the generator in Z_{2} to (45). I've said where the generators go, and clearly the relations are satisfied, so f is a homomorphism. It is clearly surjective (since f maps onto a generating set), so f must be bijective. By the way, the order of this stabilizer is, by the orbit stabilizer theorem, $\left|S_{5}\right| / 10=12$ and $\left|S_{3} \times \mathbb{Z}_{2}\right|=12$ also, so sanity check!
10. Show that the set of nonzero matrices of the form

$$
\left(\begin{array}{cc}
a & 3 b \\
b & a
\end{array}\right)
$$

is a cyclic subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{5}\right)$. What is the order of this subgroup?

Solution. Let's denote this matrix by $M(a, b)$. First, note that there are 24 such choices of nonzero matrices $M(a, b)$, since each of a and b can range over \mathbb{F}_{5}, but both can't be zero. Next, note that $\operatorname{det} M(a, b)=a^{2}-3 b^{2}$ is only zero when $a=b=0$, which we can check directly, noting that the only squares in \mathbb{F}_{5} are 0,1 , and 4 . So these 24 matrices are certainly contained in $\mathrm{GL}_{2}\left(\mathbb{F}_{5}\right)$. We also see that $M(a, b) M(c, d)=M(c, d) M(a, b)=$ $M(a c+3 b d, a d+b c)$, hence this subset is closed under multiplication and all elements commute, so it forms an abelian subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{5}\right)$. To prove that it is cyclic, we need to show that (at least) one of these elements has order 24.

We first note that 2 and 3 have order 4 in \mathbb{F}_{5}^{\times}, so $|M(2,0)|=|M(3,0)|=4$. Next, let's look at the next easiest case, $M(0, a)^{2}=M\left(3 a^{2}, 0\right)$, hence $|M(0, b)|=8$ for any $b \in \mathbb{F}_{5}^{\times}$, in view of the fact that $3 a^{2}$ is always either 3 or 2 . Now, if we can also find an element of order 3 , then its product with an element of order 8 will have order 24 , by PS 1 (we are in an abelian group). To find an element of order 3, we are looking for a matrix that satisfies the polynomial $x^{3}-1=(x-1)\left(x^{2}+x+1\right)$. So if it satisfies $x^{2}+x+1$, then it will have order 3. The characteristic polynomial of $M(a, b)$ is $x^{2}-2 a x+a^{2}-3 b^{2}$, so that choosing $(a, b)=(2,1)$, for example, gives a matrix $M(2,1)$ that satisfies the correct polynomial (by the Cayley-Hamilton theorem) so has order 3 . Hence $M(0,1) M(2,1)=M(3,2)$ has order 24 , and we've just proved that this subgroup is cyclic of order 24.
11. Find the highest power of p dividing the order of $\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$. Find a Sylow p-subgroup of $\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$. (Hint: Think upper triangular.)

Solution. From class, we've seen several times that

$$
\left|\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)\right|=\left(p^{n}-1\right)\left(p^{n}-p\right)\left(p^{n}-p^{2}\right) \cdots\left(p^{n}-p^{n-1}\right)
$$

we can factor $0+1+2+\cdots+(n-1)=n(n-1) / 2$ powers of p out and what remains $\left(p^{n}-1\right)\left(p^{n-1}-1\right) \cdots(p-1)$ will not be divisible by p.

Following the hint, and being inspired by some stuff we did on a previous problem set, we can see that the subgroup (you basically checked that this was a subgroup in homework)
of all "unipotent" matrices, i.e., upper triangular matrices with ones on the diagonal,

$$
\left(\begin{array}{cccccc}
1 & * & * & \cdots & * & * \\
0 & 1 & * & \cdots & * & * \\
0 & 0 & 1 & & * & * \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & & 1 & * \\
0 & 0 & 0 & \cdots & 0 & 1
\end{array}\right)
$$

has $n(n-1) / 2$ spots where any element of \mathbb{F}_{p} can go, so the order of this subgroup is $p^{n(n-1) / 2}$, hence it's a Sylow p-subgroup.

