University of Pennsylvania Department of Mathematics

Math 370 Algebra Fall Semester 2006

Prof. Gerstenhaber, T.A. Asher Auel
Homework \#2 Solutions (due 9/19/06)
Chapter 2 Groups
2.1 Let $M=\left(\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right) \in \mathrm{GL}_{2}(\mathbb{R})$, then
$M^{2}=\left(\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right)\left(\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right)=\left(\begin{array}{cc}0 & 1 \\ -1 & -1\end{array}\right), \quad M^{3}=\left(\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right)\left(\begin{array}{cc}0 & 1 \\ -1 & -1\end{array}\right)=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$.
So we already see that $M^{3}=-I$ where I is the identity matrix, so we know $M^{6}=\left(M^{3}\right)^{2}=$ $(-I)^{2}=I$. So we know M has order dividing 6 . Let's compute some more

$$
M^{4}=M^{3} M=(-I) M=-M=\left(\begin{array}{cc}
-1 & -1 \\
1 & 0
\end{array}\right), \quad M^{5}=M^{3} M^{2}=-M^{2}=\left(\begin{array}{cc}
0 & -1 \\
1 & 1
\end{array}\right) .
$$

So in fact, M has order 6 and the cyclic subgroup of $\mathrm{GL}_{2}(\mathbb{R})$ generated by M is

$$
\begin{aligned}
<M> & =\left\{I, M, M^{2}, M^{3}, M^{4}, M^{5}\right\} \\
& =\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & 1 \\
-1 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{cc}
-1 & -1 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & -1 \\
1 & 1
\end{array}\right)\right\} .
\end{aligned}
$$

2.2 Let G be a group and $a, b \in G$ such that a has order 5. Then

$$
\begin{aligned}
a^{3} b=b a^{3} & \Rightarrow a^{3}\left(a^{3} b\right)=a^{3}\left(b a^{3}\right) \Rightarrow\left(a^{3} a^{3}\right) b=\left(a^{3} b\right) a^{3} \\
& \Rightarrow a b=\left(b a^{3}\right) a^{3}=b a,
\end{aligned}
$$

noting that we've used our hypotheses $a^{6}=a^{5} a=a$ and $a^{3} b=b a^{3}$ in the final implication.
2.3 Which are subgroups?
a) Note that the product of real matrices is again real since it only involves multiplications and additions of real numbers (i.e. $\mathrm{GL}_{m}(\mathbb{R})$ is closed), and the identity matrix of $\mathrm{GL}_{n}(\mathbb{C})$ is the same as for $\mathrm{GL}_{n}(\mathbb{R})$. Thus $\mathrm{GL}_{n}(\mathbb{R}) \subset \mathrm{GL}_{n}(\mathbb{C})$ is a subgroup.
b) Note that $1 \in \mathbb{R}^{\times}$is the identity, and $(-1)^{2}=1$ so $\{ \pm 1\} \subset \mathbb{R}^{\times}$is a subgroup.
c) The set of positive integers under addition contains neither an identity not inverses, so is not a subgroup of \mathbb{Z}.
d) The set $\mathbb{R}_{>0}^{\times}$of positive reals contains the identity $1 \in \mathbb{R}^{\times}$, and is closed since the product of positive numbers is again positive. Thus $\mathbb{R}_{>0}^{\times} \subset \mathbb{R}^{\times}$is a subgroup.
e) The set

$$
R=\left\{\left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right): a \in \mathbb{R}^{\times}\right\}
$$

is not even a subset of $\mathrm{GL}_{2}(\mathbb{R})$ since all matrices of R have zero determinant, so are not invertible, so in particular, it cannot be a subgroup of $\mathrm{GL}_{2}(\mathbb{R})$. Note however that under matrix multiplication the set R forms a group isomorphic to \mathbb{R}^{\times}.
3.7 Let $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), B=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right) \in \mathrm{GL}_{2}(\mathbb{R})$. We'll show they are conjugate in $G L_{2}(\mathbb{R})$ but not in $\mathrm{SL}_{2}(\mathbb{R})$. To this, note that $P=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}(\mathbb{R})$ satisfies $A=P B P^{-1}$ iff $A P=P B$ iff

$$
\left(\begin{array}{cc}
a+c & b+d \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
a+b & b \\
c+d & d
\end{array}\right) .
$$

Equating the entries of these two matrices, we have in particular

$$
a+c=a+b \Rightarrow c=b, \quad b+d=b \Rightarrow d=0 .
$$

Thus any such matrix P must be of the form $P=\left(\begin{array}{cc}a & b \\ b & 0\end{array}\right)$ for $a, b \in \mathbb{R}$ such that $\operatorname{det} P=-b^{2} \neq 0$, i.e. such that $b \neq 0$. Taking for example, $a=0$ and $b=1$, we have that $\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)$ conjugates B to A in $\mathrm{GL}_{2}(\mathbb{R})$. As already noted, any such conjugating matrix P has $\operatorname{det} P=-b^{2}<0$ so can never be an element of $\mathrm{SL}_{2}(\mathbb{R})$.
4.16 Claim: Let $\varphi: G \rightarrow G^{\prime}$ be a homomorphism of groups and $x \in G$ have finite order. Then $\varphi(x) \in G^{\prime}$ has finite order and

$$
\operatorname{ord}(\varphi(x)) \mid \operatorname{ord}(x) .
$$

Recall that for $n, m \in \mathbb{Z}$ we write $n \mid m$ to to mean that n divides m, i.e. that there exists $\ell \in \mathbb{Z}$ such that $m=\ell n$.

Proof. First, I'd like to clearly state an important fact.
Lemma: Let G be a group and $x \in G$ have finite order. Then if $x^{m}=e_{G}$ for some $m \in \mathbb{Z}$ then $\operatorname{ord}(x) \mid m$.
Proof. Let $r=\operatorname{ord}(x)$. Then r is the order of the finite cyclic subgroup $\langle x\rangle=\left\{e_{G}, x, x^{2}, \ldots, x^{r-1}\right\}$ of G generated by x, i.e. (and this is how your should remember it) either $x=e_{G}$ in which case $\operatorname{ord}(x)=1$ or

$$
\operatorname{ord}(x)=r>1 \text { iff } x^{r}=e_{G} \text { and } x^{k} \neq e_{G} \text { for all } 1 \leq k<r \text {. }
$$

Now suppose $x^{m}=e_{G}$ and write $m=r \cdot \ell+k$ for some $\ell \in \mathbb{Z}$ and where $0 \leq k<r$ is the remainder when dividing m by r (note that this is an important trick.) Then we have

$$
e_{G}=x^{m}=x^{r l+k}=\left(x^{r}\right)^{l} x^{k}=e_{G}^{l} x^{k}=x^{k},
$$

which is impossible by the above boxed definition of order, unless $k=0$. But now $k=0$ means that $m=r \ell$, i.e. that $r=\operatorname{ord}(x) \mid m$.

Now back to the proof. Note that for $x \in G$, by the homomorphism criterion and by induction on n, that

$$
\varphi\left(x^{n}\right)=\varphi(x)^{n}
$$

so that if ord $(x)=r$, in particular, $x^{r}=e_{G}$, then

$$
\varphi(x)^{r}=\varphi\left(x^{r}\right)=\varphi\left(e_{G}\right)=e_{G^{\prime}},
$$

since homomorphisms always carry the identity to the identity. Thus $\varphi(x) \in G^{\prime}$ has finite order and by the lemma ord $(\varphi(x)) \mid r$.

