UNIVERSITY OF PENNSYLVANIA DEPARTMENT OF MATHEMATICS Math 370 Algebra Fall Semester 2006 Prof. Carstenhaber, T.A., Asher, Augl

Prof. Gerstenhaber, T.A. Asher Auel

Homework #2 Solutions (due 9/19/06) Chapter 2 Groups

2.1 Let
$$M = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} \in \operatorname{GL}_2(\mathbb{R})$$
, then

$$M^{2} = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}, \quad M^{3} = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}.$$

So we already see that $M^3 = -I$ where I is the identity matrix, so we know $M^6 = (M^3)^2 = (-I)^2 = I$. So we know M has order dividing 6. Let's compute some more

$$M^{4} = M^{3}M = (-I)M = -M = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}, \quad M^{5} = M^{3}M^{2} = -M^{2} = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}.$$

So in fact, M has order 6 and the cyclic subgroup of $GL_2(\mathbb{R})$ generated by M is

$$\langle M \rangle = \{I, M, M^{2}, M^{3}, M^{4}, M^{5}\}$$

= $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix} \right\}.$

2.2 Let G be a group and $a, b \in G$ such that a has order 5. Then

$$\begin{array}{rl} a^{3}b=ba^{3} & \Rightarrow & a^{3}(a^{3}b)=a^{3}(ba^{3})\Rightarrow(a^{3}a^{3})b=(a^{3}b)a^{3}\\ & \Rightarrow & ab=(ba^{3})a^{3}=ba, \end{array}$$

noting that we've used our hypotheses $a^6 = a^5 a = a$ and $a^3 b = ba^3$ in the final implication.

2.3 Which are subgroups?

- a) Note that the product of real matrices is again real since it only involves multiplications and additions of real numbers (i.e. GL_m(ℝ) is closed), and the identity matrix of GL_n(ℂ) is the same as for GL_n(ℝ). Thus GL_n(ℝ) ⊂ GL_n(ℂ) is a subgroup.
- b) Note that $1 \in \mathbb{R}^{\times}$ is the identity, and $(-1)^2 = 1$ so $\{\pm 1\} \subset \mathbb{R}^{\times}$ is a subgroup.
- c) The set of positive integers under addition contains neither an identity not inverses, so is not a subgroup of \mathbb{Z} .
- d) The set R[×]_{>0} of positive reals contains the identity 1 ∈ R[×], and is closed since the product of positive numbers is again positive. Thus R[×]_{>0} ⊂ R[×] is a subgroup.
- e) The set

$$R = \left\{ \left(\begin{array}{cc} a & 0 \\ 0 & 0 \end{array} \right) : a \in \mathbb{R}^{\times} \right\}$$

is not even a subset of $GL_2(\mathbb{R})$ since all matrices of R have zero determinant, so are not invertible, so in particular, it cannot be a subgroup of $GL_2(\mathbb{R})$. Note however that under matrix multiplication the set R forms a group isomorphic to \mathbb{R}^{\times} .

3.7 Let $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \in GL_2(\mathbb{R})$. We'll show they are conjugate in $GL_2(\mathbb{R})$ but not in $SL_2(\mathbb{R})$. To this, note that $P = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{R})$ satisfies $A = PBP^{-1}$ iff AP = PB iff

$$\begin{pmatrix} a+c & b+d \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} a+b & b \\ c+d & d \end{pmatrix}.$$

Equating the entries of these two matrices, we have in particular

$$a + c = a + b \Rightarrow c = b, \quad b + d = b \Rightarrow d = 0.$$

Thus any such matrix P must be of the form $P = \begin{pmatrix} a & b \\ b & 0 \end{pmatrix}$ for $a, b \in \mathbb{R}$ such that $\det P = -b^2 \neq 0$, i.e. such that $b \neq 0$. Taking for example, a = 0 and b = 1, we have that $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ conjugates B to A in $\operatorname{GL}_2(\mathbb{R})$. As already noted, any such conjugating matrix P has $\det P = -b^2 < 0$ so can never be an element of $SL_2(\mathbb{R})$.

4.16 Claim: Let $\varphi : G \to G'$ be a homomorphism of groups and $x \in G$ have finite order. Then $\varphi(x) \in G'$ has finite order and

$$\operatorname{ord}(\varphi(x)) \mid \operatorname{ord}(x).$$

Recall that for $n, m \in \mathbb{Z}$ we write $n \mid m$ to to mean that n divides m, i.e. that there exists $\ell \in \mathbb{Z}$ such that $m = \ell n$.

Proof. First, I'd like to clearly state an important fact.

Lemma: Let G be a group and $x \in G$ have finite order. Then if $x^m = e_G$ for some $m \in \mathbb{Z}$ then $\operatorname{ord}(x) \mid m.$

Proof. Let $r = \operatorname{ord}(x)$. Then r is the order of the finite cyclic subgroup $\langle x \rangle = \{e_G, x, x^2, \dots, x^{r-1}\}$ of G generated by x, i.e. (and this is how your should remember it) either $x = e_G$ in which case $\operatorname{ord}(x) = 1$ or

$$\operatorname{ord}(x) = r > 1$$
 iff $x^r = e_G$ and $x^k \neq e_G$ for all $1 \le k < r$.

Now suppose $x^m = e_G$ and write $m = r \cdot \ell + k$ for some $\ell \in \mathbb{Z}$ and where $0 \leq k < r$ is the remainder when dividing m by r (note that this is an important trick.) Then we have

$$e_G = x^m = x^{rl+k} = (x^r)^l x^k = e_G^l x^k = x^k,$$

which is impossible by the above boxed definition of order, unless k = 0. But now k = 0 means that $m = r\ell$, i.e. that $r = \operatorname{ord}(x) \mid m$.

Now back to the proof. Note that for $x \in G$, by the homomorphism criterion and by induction on n, that

$$\varphi(x^n) = \varphi(x)^n,$$

so that if $\operatorname{ord}(x) = r$, in particular, $x^r = e_G$, then

$$\varphi(x)^r = \varphi(x^r) = \varphi(e_G) = e_{G'},$$

since homomorphisms always carry the identity to the identity. Thus $\varphi(x) \in G'$ has finite order and by the lemma $\operatorname{ord}(\varphi(x)) \mid r$. \square