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3.4 a) Let G be a group and a, b ∈ G. Then

(aba−1)n = abna−1,

for all n ∈ Z.

Proof. For n = 0 this is clear since e = (aba−1)0 = ab0a−1 = aa−1. For n > 0, the idea is that

(aba−1)n = (aba−1)(aba−1) · · · (aba−1)(aba−1)
= ab(aa−1)b(aa−1) · · · b(aa−1)ba−1

= abb · · · ba−1 = abna−1.

This is enough, but I’ll give the formal proof by induction as an example. Suppose (aba−1)n =
abna−1 holds for some n > 1, then note that

(aba−1)n+1 = (aba−1)n(aba−1)
= (abna−1)(aba−1) = abn(aa−1)ba−1 = abnba−1

= abn+1a−1,

where we’ve used the induction hypothesis in the second equality. So by induction, our claimed
formula holds for all n > 0.

Now we handle the case n < 0. For n = −1, note that

(aba−1)(ab−1a−1) = ab(aa−1)b−1a−1 = a(bb−1)a−1 = aa−1 = e,

which shows that (aba−1)−1 = ab−1a−1. Now since, for n > 0

(aba−1)−n = ((aba−1)−1)n = (ab−1a−1)n,

so applying the case of n > 0 to ab−1a−1 gives use what we want. �

3.5 Claim: Let ϕ : G → G′ be an isomorphism of groups. Then the inverse mapping ϕ−1 : G′ → G
is also an isomorphism.

Proof. Since ϕ : G → G′ is an isomorphism, in particular it is a bijection, and so the inverse
mapping ϕ−1 : G′ → G exists and is also a bijection. So we only need to prove that ϕ−1 is a group
homomorphism. To that end, let a′, b′ ∈ G′. Then since ϕ is bijective, there exist a, b ∈ G with
ϕ(a) = a′ and ϕ(b) = b′, i.e. a = ϕ−1(a′) and b = ϕ−1(b′). Now we have

ϕ−1(a′b′) = ϕ−1(ϕ(a)ϕ(b))
= ϕ−1(ϕ(ab)) = ab

= ϕ−1(a′)ϕ−1(b′),

where the second equality follows since vp is a homomorphism and the third equality follows from
the definition of the inverse mapping. Thus ϕ−1 : G′ → G is a homomorphism of groups, and it’s
bijective by construction, so it’s an isomorphism. �

3.12 Claim: Let G be a group and let ϕ : G → G be the inversion map ϕ(x) = x−1 for all x ∈ G.
Then

a) ϕ is a bijection, and
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b) ϕ : G → G is an isomorphism iff G is abelian.

Proof. To a), note that ϕ is surjective since inverses exist in a group, and ϕ is injective since inverses
are unique.

To b), note that since ϕ : G → G is a bijection, to prove it’s an isomorphism it suffices to show it’s
a homomorphism. To that end, note that if ϕ is a homomorphism then for a, b ∈ G we have

ab = (b ∈ a−1)−1 = ϕ(b−1a−1) = ϕ(b−1)ϕ(a−1) = (b−1)−1(a−1)−1 = ba,

so G is abelian. Conversely, if G is abelian, then for all a, b ∈ G we have

ϕ(ab) = (ab)−1 = b−1a−1 = a−1b−1 = ϕ(a)ϕ(b),

so ϕ is a homomorphism. �

4.4 Since Z is an (infinite) cyclic group with generator 1 ∈ Z, any homomorphism ϕ : Z → Z is
determined by a choice of image ϕ(1) ∈ Z. For n ∈ Z, let ϕn : Z → Z be the homomorphism
with ϕn(1) = n, then for any a ∈ Z, ϕn(a) = n · a. Since multiplication of integers distributes over
addition, we see that each ϕn is in fact a homomorphism, so the collection {ϕn : Z → Z : n ∈ Z}
constitutes all homomorphisms Z → Z. Now we have three cases:

• ϕ0 : Z → Z is the constant zero map, i.e. the trivial homomorphism. It is neither injective
nor surjective.

• ϕn : Z → Z for n 6= 0 are all injective since

a ∈ ker(ϕn) ⇐⇒ na = 0 ⇐⇒ a = 0,

since we’re assuming n 6= 0. Thus ker(ϕn) = {0}, and thus ϕ is injective.
• ϕ1 : Z → Z is the identity map, which is an isomorphism and ϕ−1 : Z → Z is the “minus”

map, which is an isomorphism by 3.12b, since Z is abelian.
• for n 6= ±1, ϕn : Z → Z is not surjective since for example, na = 1 is impossible for

n 6= ±1 and a ∈ Z, i.e. 1 ∈ Z is never in the image of any of these maps.

4.17 Claim: Let G be a group and

Z(G) = {c ∈ G : cg = gcfor allg ∈ G} ∈ G

its center. Then Z(G) is a normal subgroup of G.

Proof. We must first show Z(G) is a subgroup. First note that for all g ∈ G, eg = ge by definition
so that e ∈ Z(G). Now for a, b ∈ Z(G), note that for any g ∈ G, we have

(ab)g = a(bg) = a(gb) = (ag)b = (ga)b = g(ab),

so that again ab ∈ Z(G). Thus Z(G) is closed under multiplication and contains the identity, so is a
subgroup of G.

Finally, for g ∈ G, note that for all c ∈ Z(G), we have cg = gc, i.e. gcg−1 = c ∈ Z(G). Thus the
center is a normal subgroup. You could say it’s the “most normal” normal subgroup. �

4.22/23 Claim: Let ϕ : G → G′ be a surjective homomorphism of groups. Then
a) If G is cyclic then G′ is cyclic.
b) If G is abelian then G′ is abelian.

4.23 If N ⊂ G is a normal subgroup, then ϕ(N) ⊂ G′ is a normal subgroup.

Proof. To a), recall that if G is cyclic with generator x ∈ G, then G can be written (whether G is
finite or infinite) as

G =< x >= {xn : n ∈ Z} = {. . . , x−2, x−1, eG, x, x2, . . .}.



Then since vp is surjective,

G′ = ϕ(G) = ϕ(< x >)
= {. . . , ϕ(x−2), ϕ(x−1), ϕ(eG), ϕ(x), ϕ(x2), . . .}
= {. . . , ϕ(x)−2, ϕ(x)−1, eG′ , ϕ(x), ϕ(x)2, . . .}
= < ϕ(x) >,

by 3.4a, so G′ is cyclic.
To b), for all a′, b′ ∈ G′, since ϕ is surjective there exist a, b ∈ G such that ϕ(a) = a′ and

ϕ(b) = b′. Then
a′b′ = ϕ(a)ϕ(b) = ϕ(ab) = ϕ(ba) = ϕ(b)ϕ(a) = b′a′,

using the fact that G is abelian in the third equality. Thus G′ is abelian.
To 4.23, let n′ ∈ ϕ(N) and g′ ∈ G′. First, ϕ(N) ⊂ G is easily seen to be a subgroup from the fact

that N ⊂ G is a subgroup. We want to now show ϕ(N) ⊂ G is a normal subgroup.
To that end, we note that as before, since vp is surjective, there exists g ∈ G such that ϕ(g) = g′.

Furthermore, note that by 3.6, ϕ(g−1) = ϕ(g)−1 = (g′)−1. By the definition of ϕ(N), there exists
n ∈ N ⊂ G with ϕ(n) = n′. Now since N ⊂ G is a normal subgroup, we have that gng−1 = m ∈
N . Finally, we have that

g′n(g′)−1 = ϕ(g)ϕ(b)ϕ(g−1) = ϕ(gng−1) = ϕ(m) ∈ ϕ(N),

so that as claimed, vp(N) ⊂ G is a normal subgroup. �


