University of Pennsylvania Department of Mathematics

Math 370 Algebra Fall Semester 2006

Prof. Gerstenhaber, T.A. Asher Auel
Homework \#3 Solutions (due 9/26/06)
Chapter 2 Groups
3.4 a) Let G be a group and $a, b \in G$. Then

$$
\left(a b a^{-1}\right)^{n}=a b^{n} a^{-1}
$$

for all $n \in \mathbb{Z}$.
Proof. For $n=0$ this is clear since $e=\left(a b a^{-1}\right)^{0}=a b^{0} a^{-1}=a a^{-1}$. For $n>0$, the idea is that

$$
\begin{aligned}
\left(a b a^{-1}\right)^{n} & =\left(a b a^{-1}\right)\left(a b a^{-1}\right) \cdots\left(a b a^{-1}\right)\left(a b a^{-1}\right) \\
& =a b\left(a a^{-1}\right) b\left(a a^{-1}\right) \cdots b\left(a a^{-1}\right) b a^{-1} \\
& =a b b \cdots b a^{-1}=a b^{n} a^{-1} .
\end{aligned}
$$

This is enough, but I'll give the formal proof by induction as an example. Suppose $\left(a b a^{-1}\right)^{n}=$ $a b^{n} a^{-1}$ holds for some $n>1$, then note that

$$
\begin{aligned}
\left(a b a^{-1}\right)^{n+1} & =\left(a b a^{-1}\right)^{n}\left(a b a^{-1}\right) \\
& =\left(a b^{n} a^{-1}\right)\left(a b a^{-1}\right)=a b^{n}\left(a a^{-1}\right) b a^{-1}=a b^{n} b a^{-1} \\
& =a b^{n+1} a^{-1},
\end{aligned}
$$

where we've used the induction hypothesis in the second equality. So by induction, our claimed formula holds for all $n>0$.

Now we handle the case $n<0$. For $n=-1$, note that

$$
\left(a b a^{-1}\right)\left(a b^{-1} a^{-1}\right)=a b\left(a a^{-1}\right) b^{-1} a^{-1}=a\left(b b^{-1}\right) a^{-1}=a a^{-1}=e,
$$

which shows that $\left(a b a^{-1}\right)^{-1}=a b^{-1} a^{-1}$. Now since, for $n>0$

$$
\left(a b a^{-1}\right)^{-n}=\left(\left(a b a^{-1}\right)^{-1}\right)^{n}=\left(a b^{-1} a^{-1}\right)^{n}
$$

so applying the case of $n>0$ to $a b^{-1} a^{-1}$ gives use what we want.
3.5 Claim: Let $\varphi: G \rightarrow G^{\prime}$ be an isomorphism of groups. Then the inverse mapping $\varphi^{-1}: G^{\prime} \rightarrow G$ is also an isomorphism.

Proof. Since $\varphi: G \rightarrow G^{\prime}$ is an isomorphism, in particular it is a bijection, and so the inverse mapping $\varphi^{-1}: G^{\prime} \rightarrow G$ exists and is also a bijection. So we only need to prove that φ^{-1} is a group homomorphism. To that end, let $a^{\prime}, b^{\prime} \in G^{\prime}$. Then since φ is bijective, there exist $a, b \in G$ with $\varphi(a)=a^{\prime}$ and $\varphi(b)=b^{\prime}$, i.e. $a=\varphi^{-1}\left(a^{\prime}\right)$ and $b=\varphi^{-1}\left(b^{\prime}\right)$. Now we have

$$
\begin{aligned}
\varphi^{-1}\left(a^{\prime} b^{\prime}\right) & =\varphi^{-1}(\varphi(a) \varphi(b)) \\
& =\varphi^{-1}(\varphi(a b))=a b \\
& =\varphi^{-1}\left(a^{\prime}\right) \varphi^{-1}\left(b^{\prime}\right),
\end{aligned}
$$

where the second equality follows since $v p$ is a homomorphism and the third equality follows from the definition of the inverse mapping. Thus $\varphi^{-1}: G^{\prime} \rightarrow G$ is a homomorphism of groups, and it's bijective by construction, so it's an isomorphism.
3.12 Claim: Let G be a group and let $\varphi: G \rightarrow G$ be the inversion map $\varphi(x)=x^{-1}$ for all $x \in G$. Then
a) φ is a bijection, and
b) $\varphi: G \rightarrow G$ is an isomorphism iff G is abelian.

Proof. To a), note that φ is surjective since inverses exist in a group, and φ is injective since inverses are unique.

To b), note that since $\varphi: G \rightarrow G$ is a bijection, to prove it's an isomorphism it suffices to show it's a homomorphism. To that end, note that if φ is a homomorphism then for $a, b \in G$ we have

$$
a b=\left(b \in a^{-1}\right)^{-1}=\varphi\left(b^{-1} a^{-1}\right)=\varphi\left(b^{-1}\right) \varphi\left(a^{-1}\right)=\left(b^{-1}\right)^{-1}\left(a^{-1}\right)^{-1}=b a,
$$

so G is abelian. Conversely, if G is abelian, then for all $a, b \in G$ we have

$$
\varphi(a b)=(a b)^{-1}=b^{-1} a^{-1}=a^{-1} b^{-1}=\varphi(a) \varphi(b),
$$

so φ is a homomorphism.
4.4 Since \mathbb{Z} is an (infinite) cyclic group with generator $1 \in \mathbb{Z}$, any homomorphism $\varphi: \mathbb{Z} \rightarrow \mathbb{Z}$ is determined by a choice of image $\varphi(1) \in \mathbb{Z}$. For $n \in \mathbb{Z}$, let $\varphi_{n}: \mathbb{Z} \rightarrow \mathbb{Z}$ be the homomorphism with $\varphi_{n}(1)=n$, then for any $a \in \mathbb{Z}, \varphi_{n}(a)=n \cdot a$. Since multiplication of integers distributes over addition, we see that each φ_{n} is in fact a homomorphism, so the collection $\left\{\varphi_{n}: \mathbb{Z} \rightarrow \mathbb{Z}: n \in \mathbb{Z}\right\}$ constitutes all homomorphisms $\mathbb{Z} \rightarrow \mathbb{Z}$. Now we have three cases:

- $\varphi_{0}: \mathbb{Z} \rightarrow \mathbb{Z}$ is the constant zero map, i.e. the trivial homomorphism. It is neither injective nor surjective.
- $\varphi_{n}: \mathbb{Z} \rightarrow \mathbb{Z}$ for $n \neq 0$ are all injective since

$$
a \in \operatorname{ker}\left(\varphi_{n}\right) \Longleftrightarrow n a=0 \Longleftrightarrow a=0,
$$

since we're assuming $n \neq 0$. Thus $\operatorname{ker}\left(\varphi_{n}\right)=\{0\}$, and thus φ is injective.

- $\varphi_{1}: \mathbb{Z} \rightarrow \mathbb{Z}$ is the identity map, which is an isomorphism and $\varphi_{-1}: \mathbb{Z} \rightarrow \mathbb{Z}$ is the "minus" map, which is an isomorphism by 3.12 b , since \mathbb{Z} is abelian.
- for $n \neq \pm 1, \varphi_{n}: \mathbb{Z} \rightarrow \mathbb{Z}$ is not surjective since for example, $n a=1$ is impossible for $n \neq \pm 1$ and $a \in \mathbb{Z}$, i.e. $1 \in \mathbb{Z}$ is never in the image of any of these maps.
4.17 Claim: Let G be a group and

$$
Z(G)=\{c \in G: c g=g c \text { for all } g \in G\} \in G
$$

its center. Then $Z(G)$ is a normal subgroup of G.
Proof. We must first show $Z(G)$ is a subgroup. First note that for all $g \in G, e g=g e$ by definition so that $e \in Z(G)$. Now for $a, b \in Z(G)$, note that for any $g \in G$, we have

$$
(a b) g=a(b g)=a(g b)=(a g) b=(g a) b=g(a b),
$$

so that again $a b \in Z(G)$. Thus $Z(G)$ is closed under multiplication and contains the identity, so is a subgroup of G.

Finally, for $g \in G$, note that for all $c \in Z(G)$, we have $c g=g c$, i.e. $g c g^{-1}=c \in Z(G)$. Thus the center is a normal subgroup. You could say it's the "most normal" normal subgroup.
4.22/23 Claim: Let $\varphi: G \rightarrow G^{\prime}$ be a surjective homomorphism of groups. Then
a) If G is cyclic then G^{\prime} is cyclic.
b) If G is abelian then G^{\prime} is abelian.
4.23 If $N \subset G$ is a normal subgroup, then $\varphi(N) \subset G^{\prime}$ is a normal subgroup.

Proof. To a), recall that if G is cyclic with generator $x \in G$, then G can be written (whether G is finite or infinite) as

$$
G=<x>=\left\{x^{n}: n \in \mathbb{Z}\right\}=\left\{\ldots, x^{-2}, x^{-1}, e_{G}, x, x^{2}, \ldots\right\}
$$

Then since $v p$ is surjective,

$$
\begin{aligned}
G^{\prime} & =\varphi(G)=\varphi(<x>) \\
& =\left\{\ldots, \varphi\left(x^{-2}\right), \varphi\left(x^{-1}\right), \varphi\left(e_{G}\right), \varphi(x), \varphi\left(x^{2}\right), \ldots\right\} \\
& =\left\{\ldots, \varphi(x)^{-2}, \varphi(x)^{-1}, e_{G^{\prime}}, \varphi(x), \varphi(x)^{2}, \ldots\right\} \\
& =<\varphi(x)>
\end{aligned}
$$

by 3.4 a , so G^{\prime} is cyclic.
To b), for all $a^{\prime}, b^{\prime} \in G^{\prime}$, since φ is surjective there exist $a, b \in G$ such that $\varphi(a)=a^{\prime}$ and $\varphi(b)=b^{\prime}$. Then

$$
a^{\prime} b^{\prime}=\varphi(a) \varphi(b)=\varphi(a b)=\varphi(b a)=\varphi(b) \varphi(a)=b^{\prime} a^{\prime}
$$

using the fact that G is abelian in the third equality. Thus G^{\prime} is abelian.
To 4.23, let $n^{\prime} \in \varphi(N)$ and $g^{\prime} \in G^{\prime}$. First, $\varphi(N) \subset G$ is easily seen to be a subgroup from the fact that $N \subset G$ is a subgroup. We want to now show $\varphi(N) \subset G$ is a normal subgroup.

To that end, we note that as before, since $v p$ is surjective, there exists $g \in G$ such that $\varphi(g)=g^{\prime}$. Furthermore, note that by 3.6, $\varphi\left(g^{-1}\right)=\varphi(g)^{-1}=\left(g^{\prime}\right)^{-1}$. By the definition of $\varphi(N)$, there exists $n \in N \subset G$ with $\varphi(n)=n^{\prime}$. Now since $N \subset G$ is a normal subgroup, we have that $g n g^{-1}=m \in$ N. Finally, we have that

$$
g^{\prime} n\left(g^{\prime}\right)^{-1}=\varphi(g) \varphi(b) \varphi\left(g^{-1}\right)=\varphi\left(g n g^{-1}\right)=\varphi(m) \in \varphi(N),
$$

so that as claimed, $v p(N) \subset G$ is a normal subgroup.

