UNIVERSITY OF PENNSYLVANIA DEPARTMENT OF MATHEMATICS Math 370 Algebra Fall Semester 2006 Prof. Gerstenhaber, T.A. Asher Auel

FIOI. OEIstellilabel, I.A. Ashel Auel

Homework #4 Solutions (due 10/3/06) Chapter 2 Groups

Recall: Let G be a group. For $x \in G$ let #x denote the order of x in G. The central mantra of orders (proved in the previous solution set) is:

and the order #x of x is the smallest such positive integer n.

Definitions/Facts: About gcd and lcm. For positive integers n and m define their *greatest common divisor* to be the positive integer gcd(n, m) characterized by the following equivalent conditions:

- i) any common divisor of n and m is a divisor of gcd(n, m), i.e. a|n and $a|m \Rightarrow a|gcd(n, m)$,
- *ii*) gcd(n,m) is the smallest positive integer that can be written in the form kn + lm for $k, l \in \mathbb{Z}$,
- *iii)* writing $n = p_1^{e_1} \cdots p_r^{e_r}$ and $m = p_1^{f_1} \cdots p_r^{f_r}$ as a product of powers of distinct prime numbers p_1, \ldots, p_r with nonnegative exponents $e_1, \ldots, e_r, f_1, \ldots, f_r \ge 0$, then we have that $gcd(n,m) = p_1^{g_1} \cdots p_r^{g_r}$ where $g_i = min\{e_i, f_i\}$ for $i = 1, \ldots, r$.

For positive integers n and m define their *least common multiple* to be the positive integer lcm(n, m) characterized by the following equivalent conditions:

- *i*) any common multiple of n and m is a multiple of lcm(n, m), i.e. n|b and $m|b \Rightarrow lcm(n, m)|b$,
- *ii*) lcm(n,m) is the smallest positive integer that can be written simultaneously in the form kn and lm for $k, l \ge 1$, note that in this case $\frac{l}{k}$ is the "reduced fraction" of $\frac{n}{m}$,
- *iii)* writing $n = p_1^{e_1} \cdots p_r^{e_r}$ and $m = p_1^{f_1} \cdots p_r^{f_r}$ as a product of powers of distinct prime numbers p_1, \ldots, p_r with nonnegative exponents $e_1, \ldots, e_r, f_1, \ldots, f_r \ge 0$, then we have that $gcd(n,m) = p_1^{g_1} \cdots p_r^{g_r}$ where $g_i = \max\{e_i, f_i\}$ for $i = 1, \ldots, r$.

The gcd and lcm have the following useful properties:

- $gcd(n,m) \cdot lcm(n,m) = n \cdot m$,
- n and m are relatively prime $\Leftrightarrow \gcd(n,m) = 1 \Leftrightarrow \operatorname{lcm}(n,m) = nm$,
- $n|m \Leftrightarrow \gcd(n,m) = n \Leftrightarrow \operatorname{lcm}(n,m) = m$
- **2.10** Let G be a group.
 - a) Claim: If #x = rs for some $r, s \ge 1$ then $\#x^r = s$.

Proof. First note that $(x^r)^s = x^{rs} = e$ since #x = rs so $\#x^r \mid s$. Furthermore, for 0 < k < |s| we have that 0 < rk < r|s|, so that $(x^r)^k = x^{rk} \neq e$. So $\#x^r$ really is s. \Box

b) Claim: If #x = n then

$$#x^r = \frac{n}{\gcd(n,r)} = \frac{\operatorname{lcm}(n,r)}{r}.$$

for any $r \geq 1$.

Proof. For $l \ge 1$ we have that

$$(x^r)^l = x^{rl} = e \iff n|rl \iff nk = rl \text{ for some } k \ge 1,$$

and if $l = \#x^r$, i.e. the least possible such l, then nk = rl = lcm(n, m) is then the least common multiple of n and m. But then

$$\#x^r = l = \frac{nk}{r} = \frac{\operatorname{lcm}(n,m)}{r} = \frac{n}{\gcd(n,m)},$$

where the final equality comes from the formula relating gcd and lcm.

2.11 Let $a, b \in G$ be elements of a group, and suppose ab is of finite order n. Then

$$(ab)^n = e \Leftrightarrow a^{-1}(ab)^n a = a^{-1}a = e \Leftrightarrow (a^{-1}aba)^n = e \Leftrightarrow (ba)^n = e,$$

where the second equivalence is exercise 3.4. Thus ba has finite order and #ba|n. Now similarly, for 0 < k < n we have

$$(ab)^k \neq e \iff a^{-1}(ab)^k a \neq a^{-1}a = e \iff (a^{-1}aba)^k \neq e \iff (ba)^k \neq e$$

and so indeed the order of ba is n. This also proves that if ab has infinite order, then so does ba.

2.16 Let G be a cyclic group of order n. Then an element $x \in G$ generates G if and only if #x = n. Now fixing a generator $x \in G$, we have $G = \{e, x, x^2, \dots, x^{n-1}\}$, and so in view of the formula from exercise 2.10b, we see that

$$x^r$$
 also generates $G \Leftrightarrow \#x^r = n \Leftrightarrow \frac{n}{\gcd(n,r)} = n \Leftrightarrow \gcd(n,r) = 1$
 $\Leftrightarrow r$ is relatively prime to n .

Thus in asking the question "how many of its elements generate G?" we are forced to deal with the following number

$$\begin{split} \varphi(n) &= |\{r: 0 < r < n \text{ and } \gcd(n, r) = 1\}| \\ &= \text{ the number of numbers from } 1, 2, \dots, n-1 \text{ that are relatively prime to } n, \end{split}$$

usually called the *Euler phi-function* of n.

a) For n = 6, we see that of the numbers 1, 2, 3, 4, 5, only 1, 5 are relatively prime to 6, so $\varphi(6) = 2$. For completeness I'll compute the cyclic subgroups generated by every element:

$$\begin{array}{rcl} < e > & = & \{e\} \\ < x > & = & \{e, x, x^2, x^3, x^4, x^5\} \\ < x^2 > & = & \{e, x^2, x^4\} \\ < x^3 > & = & \{e, x^3\} \\ < x^4 > & = & \{e, x^4, x^2\} \\ < x^5 > & = & \{e, x^5, x^4, x^3, x^2, x\} \end{array}$$

and we see that only x and x^5 are generators.

		1 1	
n	numbers $1, \ldots, n-1$	relatively prime to n	$\varphi(n)$
2	1	1	1
3	1,2	1,2	2
4	1, 2, 3	1, 3	2
5	1, 2, 3, 4	1, 2, 3, 4	4
6	1, 2, 3, 4, 5	1, 5	2
7	1, 2, 3, 4, 5, 6	1, 2, 3, 4, 5, 6	6
8	1, 2, 3, 4, 5, 6, 7	1, 3, 5, 7	4
9	1, 2, 3, 4, 5, 6, 7, 8	1, 2, 4, 5, 7, 8	6
10	1, 2, 3, 4, 5, 6, 7, 8, 9	1, 3, 7, 9	4
11	1, 2, 3, 4, 5, 6, 7, 8, 9, 10	$1, 2, 3, 4, 5, \overline{6, 7, 8, 9, 10}$	10
12	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11	1, 5, 7, 11	4

b) Why don't we make a little table for n = 2, ..., 12:

c) As already noted, the number of elements that generate a cyclic group of order n is $\varphi(n)$.

2.20a Claim: Let $x, y \in G$ be commuting elements of a group and let #x = n and #y = m. Then all we can say is that

$$\#xy \mid \operatorname{lcm}(n,m).$$

Proof. First, note that since x and y commute, $(xy)^l = x^l y^l$ for all $l \in \mathbb{Z}$. Now let l = lcm(n, m). Then since $n \mid l$ and $m \mid l$, i.e. there exist $a, b \ge 1$ such that l = an = bm, we know that

$$(xy)^{l} = x^{l}y^{l} = (x^{n})^{a}(y^{m})^{b} = e^{a}e^{b} = e,$$

thus $\#xy \mid \operatorname{lcm}(n,m)$.

Note: The order #xy is difficult to relate exactly to the individual orders #x and #y. For example, let $G = \langle a \rangle$ be a cyclic group of order 6, then the following table displays the range of possible behavior:

x	y	xy	#x	#y	#xy	$\operatorname{lcm}(\#x, \#y)$	"="?
a	a	a^2	6	6	3	6	no
a	a^2	a^3	6	3	2	6	no
a	a^3	a^4	6	2	3	6	no
a	a^4	a^5	6	3	6	6	yes
a	a^5	e	6	6	1	6	no
a^2	a^2	a^4	3	3	3	3	yes
a^2	a^3	a^5	3	2	6	6	yes
a^2	a^4	e	3	3	1	3	no
a^2	a^5	a	3	6	6	6	yes
a^3	a^3	e	2	2	1	2	no
a^3	a^4	a	2	3	6	6	yes
a^3	a^5	a^2	2	6	3	6	no
a^4	a^4	a^2	3	3	3	3	yes
a^4	a^5	a^3	3	6	2	6	no
a^5	a^5	a^4	6	6	3	6	no

3.11 Claim: Let G be a group. Then the set Aut(G) of group automorphisms of G forms a group under composition.

Proof. We need to verify the group axioms for the set Aut(G) under the operation of composition. First, we show that Aut(G) is closed under composition. We'll need the following:

Lemma: Let $\varphi, \psi: G \to G$ be maps. Then

- *i*) if φ and ψ are injective then so is $\varphi \circ \psi$,
- *ii*) if φ and ψ are surjective then so is $\varphi \circ \psi$,
- *iii*) if φ and ψ are bijective then so is $\varphi \circ \psi$,
- *iv*) if φ and ψ are group homomorphisms then so is $\varphi \circ \psi$,
- v) if φ and ψ are group isomorphisms then so is $\varphi \circ \psi$.

Proof. To *i*), let $x, y \in G$, then

$$(\varphi \circ \psi)(x) = (\varphi \circ \psi)(y) \quad \Rightarrow \quad \varphi(\psi(x)) = \varphi(\psi(y)) \quad \Rightarrow \quad \psi(x) = \psi(y) \quad \Rightarrow \quad x = y,$$

where the second and third implications follow if φ and ψ are injective, respectively. Thus $\varphi \circ \phi$ is injective.

To *ii*), let $x \in G$, then since ψ is surjective, there exists $x' \in G$ such that $\psi(x') = x$. Since φ is surjective, there exists $x'' \in G$ such that $\varphi(x'') = x'$. But then

$$(\varphi \circ \psi)(x'') = \varphi(\psi(x'')) = \varphi(x') = x,$$

so we see that $\varphi \circ \psi$ is surjective.

To *iii*), combine *i*) and *ii*).

To *iv*), let $x, y \in G$, then

$$(\varphi \circ \psi)(xy) = \varphi(\psi(xy)) = \varphi(\psi(x)\psi(y)) = \varphi(\psi(x)) \ \varphi(\psi(y)) = (\varphi \circ \psi)(x) \ (\varphi \circ \psi)(y),$$

if both φ and ψ are homomorphisms. So we indeed see that $\varphi \circ \psi$ is a homomorphism.

To v), combine iii) and iv).

Thus we see that for automorphisms $\varphi, \psi \in Aut(G)$ the composition $\varphi \circ \psi \in Aut(G)$ is again an automorphism, so Aut(G) is closed under composition.

Next we quickly verify that composition is associative. For $\varphi, \psi, \lambda \in Aut(G)$ and for $x \in G$ we have

$$((\varphi \circ \psi) \circ \lambda)(x) = (\varphi \circ \psi)(\lambda(x)) = \varphi(\psi(\lambda(x))) = \varphi((\psi \circ \lambda)(x)) = (\varphi \circ (\psi \circ \lambda))(x),$$

so that indeed $(\varphi \circ \psi) \circ \lambda = \varphi \circ (\psi \circ \lambda)$, so composition is associative.

Next, we find an identity. Let $id : G \to G$ be the identity function, which is clearly an automorphism. For $\varphi \in Aut(G)$ and for $x \in G$ note that

$$(\varphi \circ \mathrm{id})(x) = \varphi(\mathrm{id}(x)) = \varphi(x), \quad \text{and} \quad (\mathrm{id} \circ \varphi)(x) = \mathrm{id}(\varphi(x)) = \varphi(x),$$

so that indeed $\varphi \circ id = \varphi$ and $id \circ \varphi = \varphi$. Thus $id \in Aut(G)$ is indeed an identity.

Finally, we check that inverses exist, but we already did this in exercise 3.5. For an isomorphism $\varphi: G \to G$, we previously showed that the inverse function $\varphi^{-1}: G \to G$ is again an isomorphism, and by definition satisfies $\varphi \circ \varphi^{-1} = \operatorname{id}$ and $\varphi^{-1} \circ \varphi = \operatorname{id}$, so φ^{-1} is an inverse of φ for composition. So indeed, $\operatorname{Aut}(G)$ has inverses. We've finished showing that $\operatorname{Aut}(G)$ is a group under composition. \Box

3.14 Determining some automorphism groups.

- a) We're already show that $Aut(\mathbb{Z}) = \{\pm id\}$ in exercise 4.4.
- b) Since Z/10Z is a cyclic group generated by 1, any homomorphism φ : Z/10Z → Z/10Z is completely defined by the image of 1. Now we also know by exercise 3.6a that if φ is an isomorphism, then it preserves orders of elements, i.e. #φ(x) = #x for all x ∈ Z/10Z. In particular, a generator must be sent to a generator. Now in exercise 2.16b, we already know that the only elements in Z/10Z that generate are 1, 3, 7, 9. It's also easy to see that each of the four choices of where to send 1 gives an automorphism of Z/10Z, so we'll label them accordingly:

$$\operatorname{Aut}(\mathbb{Z}/10\mathbb{Z}) = \{\varphi_1, \varphi_3, \varphi_7, \varphi_9\}.$$

Note that $\varphi_1 = \text{id.}$ Now we compute the group structure on $\text{Aut}(\mathbb{Z}/10\mathbb{Z})$. For example, for $x \in \mathbb{Z}/10\mathbb{Z}$, we have

$$(\varphi_3 \circ \varphi_7)(x) = \varphi_3(\varphi_7(x)) = \varphi_3(7x) = 3(7x) = 21x = x,$$

so we find that $\varphi_3 \circ \varphi_7 = id = \varphi_1$. Continuing like this we can calculate the multiplication table for Aut($\mathbb{Z}/10\mathbb{Z}$):

0	φ_1	$arphi_3$	φ_7	$arphi_9$
φ_1	φ_1	φ_3	φ_7	$arphi_9$
$ \varphi_3 $	$arphi_3$	$arphi_9$	φ_1	φ_7
$ \varphi_7 $	φ_7	φ_1	$arphi_9$	$arphi_3$
φ_9	φ_9	φ_7	$arphi_3$	φ_1

Notice that we have a nice group isomorphism

$$\begin{array}{ccc} (\mathbb{Z}/10\mathbb{Z})^{\times} & \xrightarrow{\sim} & \operatorname{Aut}(\mathbb{Z}/10\mathbb{Z}) \\ a & \mapsto & \varphi_a \end{array}$$

We also see that both $\varphi_3, \varphi_7 \in Aut(\mathbb{Z}/10\mathbb{Z})$ have order 4, i.e. they each generate. This shows that $Aut(\mathbb{Z}/10\mathbb{Z})$ is cyclic, and we can construct two different isomorphisms

$\mathbb{Z}/4\mathbb{Z}$	$\xrightarrow{\sim}$	$\operatorname{Aut}(\mathbb{Z}/10\mathbb{Z})$	$\mathbb{Z}/4\mathbb{Z}$	$\xrightarrow{\sim}$	$\operatorname{Aut}(\mathbb{Z}/10\mathbb{Z})$
0	\mapsto	φ_1	0	\mapsto	φ_1
1	\mapsto	$arphi_3$	1	\mapsto	φ_7
2	\mapsto	$arphi_9$	2	\mapsto	$arphi_9$
3	\mapsto	$arphi_7$	3	\mapsto	$arphi_3$

neither of which seems particularly appealing, but just illustrates the two ways we can force ourselves to think of $Aut(\mathbb{Z}/10\mathbb{Z})$ as a cyclic group of order 4.

c) Writing $S_3 = \langle s, t : s^2 = t^3 = e, ts = st^2 \rangle$, we see that the symmetric group S_3 is generated by elements s, t or orders 2, 3, respectively, subject to a further relation. Any automorphism $\varphi : S_3 \to S_3$ is determined by the images of s, t, and as before, must preserve the orders of elements. Now S_3 has three elements s, st, st^2 of order 2, and two elements t, t^2 of order 3. So any automorphism must take s to one of s, st, s^2 and t to one of t, t^2 . There are only six conceivable ways of doing this:

One now checks that each of these in fact does give an automorphism of S_3 . Thus $\operatorname{Aut}(S_3)$ just consists of these six elements. We would further like to know the structure of $\operatorname{Aut}(S_3)$. One way to do this is to know that there are only two isomorphism classes of groups of order six, namely cyclic of order six and S_3 . We then just need to check if two of these automorphisms don't commute. In fact $\operatorname{Aut}(S_3) \cong S_3$. Another way to see this is to note that the center $Z(S_3)$ is trivial, so that conjugation by each element of S_3 gives a different automorphism, since there are already six of these, these fill up all of $\operatorname{Aut}(S_3)$. Thus we have the nice isomorphism

$$\begin{array}{rcl} \mathrm{ad}:S_3 & \stackrel{\sim}{\longrightarrow} & \mathrm{Aut}(S_3) \\ & x & \mapsto & \mathrm{ad}_x:y \mapsto xyx^{-1}, \end{array}$$

in the notation from lab.

d) The analysis of Aut(Z/8Z) follows exactly the same way as for Aut(Z/10Z) in part b). In the end, we find that Aut(Z/8Z) = {φ₁, φ₃, φ₅, φ₇} and we have the nice isomorphism

$$\begin{array}{ccc} (\mathbb{Z}/8\mathbb{Z})^{\times} & \xrightarrow{\sim} & \operatorname{Aut}(\mathbb{Z}/8\mathbb{Z}) \\ a & \mapsto & \varphi_a \end{array}$$

Incidentally, we check that each element of $\operatorname{Aut}(\mathbb{Z}/8\mathbb{Z})$ has order two, so that $\operatorname{Aut}(\mathbb{Z}/8\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

- e) Is the automorphism group of a cyclic group necessarily cyclic? Well, no, see part d).
- f) Is the automorphism group of an abelian group necessarily abelian? Well, no either. Take for example the abelian group Z/2Z × Z/2Z × Z/2Z. Each permutation of the entries gives a group automorphism, and as we know, permutations of three objects don't usually commute. In particular, we see that Aut(Z/2Z × Z/2Z × Z/2Z) has a subgroup isomorphic to the permutation group S₃. Do you think that is the whole automorphism group?

4.8 Subgroups of groups.

a) The subgroups of $S_3 = \langle s, t : s^2 = t^3 = e, ts = st^2 \rangle$ are:

$$\{e\}, \{e,s\}, \{e,st\}, \{e,st^2\}, \{e,t,t^2\}, S_3,$$

and $\{e\}, \{e, t, t^2\}, S_3$ are normal subgroups.

b) The subgroups of the quaternion group $Q = \{\pm 1, \pm i, \pm j, \pm k\}$ where $i^2 = j^2 = k^2 = -1$ and ij = k, jk = i, and ki = j, are:

$$\{1\}, \{\pm 1\}, \{\pm 1, \pm i\}, \{\pm 1, \pm j\}, \{\pm 1, \pm k\}, Q,$$

and every subgroup is normal.

4.9b Claim: Let $\psi: G \to G'$ and $\varphi: G' \to G''$ be homomorphisms of groups. Then

$$\ker(\varphi \circ \psi) = \psi^{-1}(\ker(\varphi)) \subset G.$$

Proof. Obvious.