University of Pennsylvania Department of Mathematics

Math 370 Algebra Fall Semester 2006

Prof. Gerstenhaber, T.A. Asher Auel
Homework \#4 Solutions (due 10/3/06)
Chapter 2 Groups

Recall: Let G be a group. For $x \in G$ let $\# x$ denote the order of x in G. The central mantra of orders (proved in the previous solution set) is:

$$
x^{n}=e \quad \Leftrightarrow \quad \# x \mid n
$$

and the order $\# x$ of x is the smallest such positive integer n.
Definitions/Facts: About gcd and lcm. For positive integers n and m define their greatest common divisor to be the positive integer $\operatorname{gcd}(n, m)$ characterized by the following equivalent conditions:
i) any common divisor of n and m is a divisor of $\operatorname{gcd}(n, m)$, i.e. $a \mid n$ and $a|m \Rightarrow a| \operatorname{gcd}(n, m)$,
ii) $\operatorname{gcd}(n, m)$ is the smallest positive integer that can be written in the form $k n+l m$ for $k, l \in \mathbb{Z}$,
iii) writing $n=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$ and $m=p_{1}^{f_{1}} \cdots p_{r}^{f_{r}}$ as a product of powers of distinct prime numbers p_{1}, \ldots, p_{r} with nonnegative exponents $e_{1}, \ldots, e_{r}, f_{1}, \ldots, f_{r} \geq 0$, then we have that $\operatorname{gcd}(n, m)=p_{1}^{g_{1}} \cdots p_{r}^{g_{r}}$ where $g_{i}=\min \left\{e_{i}, f_{i}\right\}$ for $i=1, \ldots, r$.
For positive integers n and m define their least common multiple to be the positive integer $\operatorname{lcm}(n, m)$ characterized by the following equivalent conditions:
$i)$ any common multiple of n and m is a multiple of $\operatorname{lcm}(n, m)$, i.e. $n \mid b$ and $m|b \Rightarrow \operatorname{lcm}(n, m)| b$,
ii) $\operatorname{lcm}(n, m)$ is the smallest positive integer that can be written simultaneously in the form $k n$ and $l m$ for $k, l \geq 1$, note that in this case $\frac{l}{k}$ is the "reduced fraction" of $\frac{n}{m}$,
iii) writing $n=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$ and $m=p_{1}^{f_{1}} \cdots p_{r}^{f_{r}}$ as a product of powers of distinct prime numbers p_{1}, \ldots, p_{r} with nonnegative exponents $e_{1}, \ldots, e_{r}, f_{1}, \ldots, f_{r} \geq 0$, then we have that $\operatorname{gcd}(n, m)=p_{1}^{g_{1}} \cdots p_{r}^{g_{r}}$ where $g_{i}=\max \left\{e_{i}, f_{i}\right\}$ for $i=1, \ldots, r$.
The gcd and lcm have the following useful properties:

- $\operatorname{gcd}(n, m) \cdot \operatorname{lcm}(n, m)=n \cdot m$,
- n and m are relatively prime $\Leftrightarrow \operatorname{gcd}(n, m)=1 \Leftrightarrow \operatorname{lcm}(n, m)=n m$,
- $n \mid m \Leftrightarrow \operatorname{gcd}(n, m)=n \Leftrightarrow \operatorname{lcm}(n, m)=m$
2.10 Let G be a group.
a) Claim: If $\# x=r s$ for some $r, s \geq 1$ then $\# x^{r}=s$.

Proof. First note that $\left(x^{r}\right)^{s}=x^{r s}=e$ since $\# x=r s$ so $\# x^{r} \mid s$. Furthermore, for $0<k<|s|$ we have that $0<r k<r|s|$, so that $\left(x^{r}\right)^{k}=x^{r k} \neq e$. So $\# x^{r}$ really is s.
b) Claim: If $\# x=n$ then

$$
\# x^{r}=\frac{n}{\operatorname{gcd}(n, r)}=\frac{\operatorname{lcm}(n, r)}{r} .
$$

for any $r \geq 1$.
Proof. For $l \geq 1$ we have that

$$
\left(x^{r}\right)^{l}=x^{r l}=e \Leftrightarrow n \mid r l \Leftrightarrow n k=r l \text { for some } k \geq 1,
$$

and if $l=\# x^{r}$, i.e. the least possible such l, then $n k=r l=\operatorname{lcm}(n, m)$ is then the least common multiple of n and m. But then

$$
\# x^{r}=l=\frac{n k}{r}=\frac{\operatorname{lcm}(n, m)}{r}=\frac{n}{\operatorname{gcd}(n, m)},
$$

where the final equality comes from the formula relating gcd and 1 cm .
2.11 Let $a, b \in G$ be elements of a group, and suppose $a b$ is of finite order n. Then

$$
(a b)^{n}=e \Leftrightarrow a^{-1}(a b)^{n} a=a^{-1} a=e \Leftrightarrow\left(a^{-1} a b a\right)^{n}=e \Leftrightarrow(b a)^{n}=e,
$$

where the second equivalence is exercise 3.4. Thus $b a$ has finite order and $\# b a \mid n$. Now similarly, for $0<k<n$ we have

$$
(a b)^{k} \neq e \Leftrightarrow a^{-1}(a b)^{k} a \neq a^{-1} a=e \Leftrightarrow\left(a^{-1} a b a\right)^{k} \neq e \Leftrightarrow(b a)^{k} \neq e,
$$

and so indeed the order of $b a$ is n. This also proves that if $a b$ has infinite order, then so does $b a$.
2.16 Let G be a cyclic group of order n. Then an element $x \in G$ generates G if and only if $\# x=n$. Now fixing a generator $x \in G$, we have $G=\left\{e, x, x^{2}, \ldots, x^{n-1}\right\}$, and so in view of the formula from exercise 2.10b, we see that

$$
\begin{aligned}
x^{r} \text { also generates } G & \Leftrightarrow \# x^{r}=n \Leftrightarrow \frac{n}{\operatorname{gcd}(n, r)}=n \Leftrightarrow \operatorname{gcd}(n, r)=1 \\
& \Leftrightarrow r \text { is relatively prime to } n .
\end{aligned}
$$

Thus in asking the question "how many of its elements generate G ?" we are forced to deal with the following number

$$
\begin{aligned}
\varphi(n) & =\mid\{r: 0<r<n \text { and } \operatorname{gcd}(n, r)=1\} \mid \\
& =\text { the number of numbers from } 1,2, \ldots, n-1 \text { that are relatively prime to } n,
\end{aligned}
$$

usually called the Euler phi-function of n.
a) For $n=6$, we see that of the numbers $1,2,3,4,5$, only 1,5 are relatively prime to 6 , so $\varphi(6)=2$. For completeness I'll compute the cyclic subgroups generated by every element:

$$
\begin{aligned}
<e> & =\{e\} \\
<x> & =\left\{e, x, x^{2}, x^{3}, x^{4}, x^{5}\right\} \\
<x^{2}> & =\left\{e, x^{2}, x^{4}\right\} \\
<x^{3}> & =\left\{e, x^{3}\right\} \\
<x^{4}> & =\left\{e, x^{4}, x^{2}\right\} \\
<x^{5}> & =\left\{e, x^{5}, x^{4}, x^{3}, x^{2}, x\right\}
\end{aligned}
$$

and we see that only x and x^{5} are generators.
b) Why don't we make a little table for $n=2, \ldots, 12$:

n	numbers $1, \ldots, n-1$	relatively prime to n	$\varphi(n)$
2	1	1	1
3	1,2	1,2	2
4	$1,2,3$	1,3	2
5	$1,2,3,4$	$1,2,3,4$	4
6	$1,2,3,4,5$	1,5	2
7	$1,2,3,4,5,6$	$1,2,3,4,5,6$	6
8	$1,2,3,4,5,6,7$	$1,3,5,7$	4
9	$1,2,3,4,5,6,7,8$	$1,2,4,5,7,8$	6
10	$1,2,3,4,5,6,7,8,9$	$1,3,7,9$	4
11	$1,2,3,4,5,6,7,8,9,10$	$1,2,3,4,5,6,7,8,9,10$	10
12	$1,2,3,4,5,6,7,8,9,10,11$	$1,5,7,11$	4

c) As already noted, the number of elements that generate a cyclic group of order n is $\varphi(n)$.
2.20a Claim: Let $x, y \in G$ be commuting elements of a group and let $\# x=n$ and $\# y=m$. Then all we can say is that

$$
\# x y \mid \operatorname{lcm}(n, m)
$$

Proof. First, note that since x and y commute, $(x y)^{l}=x^{l} y^{l}$ for all $l \in \mathbb{Z}$. Now let $l=\operatorname{lcm}(n, m)$. Then since $n \mid l$ and $m \mid l$, i.e. there exist $a, b \geq 1$ such that $l=a n=b m$, we know that

$$
(x y)^{l}=x^{l} y^{l}=\left(x^{n}\right)^{a}\left(y^{m}\right)^{b}=e^{a} e^{b}=e,
$$

thus $\# x y \mid \operatorname{lcm}(n, m)$.
Note: The order $\# x y$ is difficult to relate exactly to the individual orders $\# x$ and $\# y$. For example, let $G=\langle a\rangle$ be a cyclic group of order 6 , then the following table displays the range of possible behavior:

x	y	$x y$	$\# x$	$\# y$	$\# x y$	$\operatorname{lcm}(\# x, \# y)$	$"=" ?$
a	a	a^{2}	6	6	3	6	no
a	a^{2}	a^{3}	6	3	2	6	no
a	a^{3}	a^{4}	6	2	3	6	no
a	a^{4}	a^{5}	6	3	6	6	yes
a	a^{5}	e	6	6	1	6	no
a^{2}	a^{2}	a^{4}	3	3	3	3	yes
a^{2}	a^{3}	a^{5}	3	2	6	6	yes
a^{2}	a^{4}	e	3	3	1	3	no
a^{2}	a^{5}	a	3	6	6	6	yes
a^{3}	a^{3}	e	2	2	1	2	no
a^{3}	a^{4}	a	2	3	6	6	yes
a^{3}	a^{5}	a^{2}	2	6	3	6	no
a^{4}	a^{4}	a^{2}	3	3	3	3	yes
a^{4}	a^{5}	a^{3}	3	6	2	6	no
a^{5}	a^{5}	a^{4}	6	6	3	6	no

3.11 Claim: Let G be a group. Then the set $\operatorname{Aut}(G)$ of group automorphisms of G forms a group under composition.

Proof. We need to verify the group axioms for the set $\operatorname{Aut}(G)$ under the operation of composition.
First, we show that $\operatorname{Aut}(G)$ is closed under composition. We'll need the following:
Lemma: Let $\varphi, \psi: G \rightarrow G$ be maps. Then
${ }^{i}$) if φ and ψ are injective then so is $\varphi \circ \psi$,
ii) if φ and ψ are surjective then so is $\varphi \circ \psi$,
iii) if φ and ψ are bijective then so is $\varphi \circ \psi$,
$i v$) if φ and ψ are group homomorphisms then so is $\varphi \circ \psi$,
$v)$ if φ and ψ are group isomorphisms then so is $\varphi \circ \psi$.
Proof. To i), let $x, y \in G$, then

$$
(\varphi \circ \psi)(x)=(\varphi \circ \psi)(y) \quad \Rightarrow \quad \varphi(\psi(x))=\varphi(\psi(y)) \quad \Rightarrow \quad \psi(x)=\psi(y) \quad \Rightarrow \quad x=y,
$$

where the second and third implications follow if φ and ψ are injective, respectively. Thus $\varphi \circ \phi$ is injective.

To $i i$, let $x \in G$, then since ψ is surjective, there exists $x^{\prime} \in G$ such that $\psi\left(x^{\prime}\right)=x$. Since φ is surjective, there exists $x^{\prime \prime} \in G$ such that $\varphi\left(x^{\prime \prime}\right)=x^{\prime}$. But then

$$
(\varphi \circ \psi)\left(x^{\prime \prime}\right)=\varphi\left(\psi\left(x^{\prime \prime}\right)\right)=\varphi\left(x^{\prime}\right)=x,
$$

so we see that $\varphi \circ \psi$ is surjective.
To $i i i)$, combine i) and $i i$.
To $i v)$, let $x, y \in G$, then

$$
(\varphi \circ \psi)(x y)=\varphi(\psi(x y))=\varphi(\psi(x) \psi(y))=\varphi(\psi(x)) \varphi(\psi(y))=(\varphi \circ \psi)(x)(\varphi \circ \psi)(y),
$$

if both φ and ψ are homomorphisms. So we indeed see that $\varphi \circ \psi$ is a homomorphism.
To v), combine $i i i$) and $i v$).

Thus we see that for automorphisms $\varphi, \psi \in \operatorname{Aut}(G)$ the composition $\varphi \circ \psi \in \operatorname{Aut}(G)$ is again an automorphism, so $\operatorname{Aut}(G)$ is closed under composition.

Next we quickly verify that composition is associative. For $\varphi, \psi, \lambda \in \operatorname{Aut}(G)$ and for $x \in G$ we have

$$
((\varphi \circ \psi) \circ \lambda)(x)=(\varphi \circ \psi)(\lambda(x))=\varphi(\psi(\lambda(x)))=\varphi((\psi \circ \lambda)(x))=(\varphi \circ(\psi \circ \lambda))(x),
$$

so that indeed $(\varphi \circ \psi) \circ \lambda=\varphi \circ(\psi \circ \lambda)$, so composition is associative.
Next, we find an identity. Let id : $G \rightarrow G$ be the identity function, which is clearly an automorphism. For $\varphi \in \operatorname{Aut}(G)$ and for $x \in G$ note that

$$
(\varphi \circ \mathrm{id})(x)=\varphi(\operatorname{id}(x))=\varphi(x), \quad \text { and } \quad(\operatorname{id} \circ \varphi)(x)=\operatorname{id}(\varphi(x))=\varphi(x),
$$

so that indeed $\varphi \circ \mathrm{id}=\varphi$ and $\operatorname{id} \circ \varphi=\varphi$. Thus id $\in \operatorname{Aut}(G)$ is indeed an identity.
Finally, we check that inverses exist, but we already did this in exercise 3.5. For an isomorphism $\varphi: G \rightarrow G$, we previously showed that the inverse function $\varphi^{-1}: G \rightarrow G$ is again an isomorphism, and by definition satisfies $\varphi \circ \varphi^{-1}=\mathrm{id}$ and $\varphi^{-1} \circ \varphi=\mathrm{id}$, so φ^{-1} is an inverse of φ for composition. So indeed, $\operatorname{Aut}(G)$ has inverses. We've finished showing that $\operatorname{Aut}(G)$ is a group under composition.
3.14 Determining some automorphism groups.
a) We're already show that $\operatorname{Aut}(\mathbb{Z})=\{ \pm \mathrm{id}\}$ in exercise 4.4.
b) Since $\mathbb{Z} / 10 \mathbb{Z}$ is a cyclic group generated by 1 , any homomorphism $\varphi: \mathbb{Z} / 10 \mathbb{Z} \rightarrow \mathbb{Z} / 10 \mathbb{Z}$ is completely defined by the image of 1 . Now we also know by exercise 3.6 a that if φ is an isomorphism, then it preserves orders of elements, i.e. $\# \varphi(x)=\# x$ for all $x \in \mathbb{Z} / 10 \mathbb{Z}$. In particular, a generator must be sent to a generator. Now in exercise 2.16 b , we already know that the only elements in $\mathbb{Z} / 10 \mathbb{Z}$ that generate are $1,3,7,9$. It's also easy to see that each of the four choices of where to send 1 gives an automorphism of $\mathbb{Z} / 10 \mathbb{Z}$, so we'll label them accordingly:

$$
\operatorname{Aut}(\mathbb{Z} / 10 \mathbb{Z})=\left\{\varphi_{1}, \varphi_{3}, \varphi_{7}, \varphi_{9}\right\}
$$

Note that $\varphi_{1}=\mathrm{id}$. Now we compute the group structure on $\operatorname{Aut}(\mathbb{Z} / 10 \mathbb{Z})$. For example, for $x \in \mathbb{Z} / 10 \mathbb{Z}$, we have

$$
\left(\varphi_{3} \circ \varphi_{7}\right)(x)=\varphi_{3}\left(\varphi_{7}(x)\right)=\varphi_{3}(7 x)=3(7 x)=21 x=x,
$$

so we find that $\varphi_{3} \circ \varphi_{7}=\mathrm{id}=\varphi_{1}$. Continuing like this we can calculate the multiplication table for $\operatorname{Aut}(\mathbb{Z} / 10 \mathbb{Z})$:

\circ	φ_{1}	φ_{3}	φ_{7}	φ_{9}
φ_{1}	φ_{1}	φ_{3}	φ_{7}	φ_{9}
φ_{3}	φ_{3}	φ_{9}	φ_{1}	φ_{7}
φ_{7}	φ_{7}	φ_{1}	φ_{9}	φ_{3}
φ_{9}	φ_{9}	φ_{7}	φ_{3}	φ_{1}

Notice that we have a nice group isomorphism

$$
(\mathbb{Z} / 10 \mathbb{Z})^{\times} \xrightarrow{\sim} \operatorname{Aut}(\mathbb{Z} / 10 \mathbb{Z})
$$

We also see that both $\varphi_{3}, \varphi_{7} \in \operatorname{Aut}(\mathbb{Z} / 10 \mathbb{Z})$ have order 4, i.e. they each generate. This shows that $\operatorname{Aut}(\mathbb{Z} / 10 \mathbb{Z})$ is cyclic, and we can construct two different isomorphisms

$\mathbb{Z} / 4 \mathbb{Z}$	$\xrightarrow{\sim}$	$\operatorname{Aut}(\mathbb{Z} / 10 \mathbb{Z})$
0	\mapsto	φ_{1}
1	\mapsto	φ_{3}
2	\mapsto	φ_{9}
3	\mapsto	φ_{7}

$\mathbb{Z} / 4 \mathbb{Z} \xrightarrow{\sim} \operatorname{Aut}(\mathbb{Z} / 10 \mathbb{Z})$
$0 \mapsto \varphi_{1}$
$0 \mapsto \varphi_{1}$
$1 \mapsto \varphi_{3}$
$1 \mapsto \varphi_{7}$
$3 \mapsto \varphi_{7}$
$2 \mapsto \varphi_{9}$
$3 \mapsto \varphi_{3}$
neither of which seems particularly appealing, but just illustrates the two ways we can force ourselves to think of $\operatorname{Aut}(\mathbb{Z} / 10 \mathbb{Z})$ as a cyclic group of order 4 .
c) Writing $S_{3}=<s, t: s^{2}=t^{3}=e, t s=s t^{2}>$, we see that the symmetric group S_{3} is generated by elements s, t or orders 2,3 , respectively, subject to a further relation. Any automorphism $\varphi: S_{3} \rightarrow S_{3}$ is determined by the images of s, t, and as before, must preserve the orders of elements. Now S_{3} has three elements $s, s t, s t^{2}$ of order 2 , and two elements t, t^{2} of order 3. So any automorphism must take s to one of $s, s t, s^{2}$ and t to one of t, t^{2}. There are only six conceivable ways of doing this:

$$
\begin{array}{lllll}
s \rightarrow s & s \rightarrow s t & s \rightarrow s t^{2} \\
t \rightarrow t & t \rightarrow t & t \rightarrow s \\
s \rightarrow s & s \rightarrow s t & s \rightarrow s t^{2} \\
s \rightarrow t^{2} & t \rightarrow t^{2} & t \rightarrow t^{2}
\end{array}
$$

One now checks that each of these in fact does give an automorphism of S_{3}. Thus Aut $\left(S_{3}\right)$ just consists of these six elements. We would further like to know the structure of $\operatorname{Aut}\left(S_{3}\right)$. One way to do this is to know that there are only two isomorphism classes of groups of order six, namely cyclic of order six and S_{3}. We then just need to check if two of these automorphisms don't commute. In fact $\operatorname{Aut}\left(S_{3}\right) \cong S_{3}$. Another way to see this is to note that the center $Z\left(S_{3}\right)$ is trivial, so that conjugation by each element of S_{3} gives a different automorphism, since there are already six of these, these fill up all of $\operatorname{Aut}\left(S_{3}\right)$. Thus we have the nice isomorphism

$$
\begin{aligned}
\operatorname{ad}: S_{3} & \xrightarrow{ } \operatorname{Aut}\left(S_{3}\right) \\
x & \mapsto \operatorname{ad}_{x}: y \mapsto x y x^{-1},
\end{aligned}
$$

in the notation from lab.
d) The analysis of $\operatorname{Aut}(\mathbb{Z} / 8 \mathbb{Z})$ follows exactly the same way as for $\operatorname{Aut}(\mathbb{Z} / 10 \mathbb{Z})$ in part $\mathbf{b})$. In the end, we find that $\operatorname{Aut}(\mathbb{Z} / 8 \mathbb{Z})=\left\{\varphi_{1}, \varphi_{3}, \varphi_{5}, \varphi_{7}\right\}$ and we have the nice isomorphism

$$
\begin{array}{ccc}
(\mathbb{Z} / 8 \mathbb{Z})^{\times} & \xrightarrow{\sim} & \operatorname{Aut}(\mathbb{Z} / 8 \mathbb{Z}) \\
a & \mapsto & \varphi_{a}
\end{array}
$$

Incidentally, we check that each element of $\operatorname{Aut}(\mathbb{Z} / 8 \mathbb{Z})$ has order two, so that $\operatorname{Aut}(\mathbb{Z} / 8 \mathbb{Z}) \cong$ $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.
e) Is the automorphism group of a cyclic group necessarily cyclic? Well, no, see part d).
f) Is the automorphism group of an abelian group necessarily abelian? Well, no either. Take for example the abelian group $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. Each permutation of the entries gives a group automorphism, and as we know, permutations of three objects don't usually commute. In particular, we see that $\operatorname{Aut}(\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z})$ has a subgroup isomorphic to the permutation group S_{3}. Do you think that is the whole automorphism group?
4.8 Subgroups of groups.
a) The subgroups of $S_{3}=<s, t: s^{2}=t^{3}=e, t s=s t^{2}>$ are:

$$
\{e\},\{e, s\},\{e, s t\},\left\{e, s t^{2}\right\},\left\{e, t, t^{2}\right\}, S_{3},
$$

and $\{e\},\left\{e, t, t^{2}\right\}, S_{3}$ are normal subgroups.
b) The subgroups of the quaternion group $Q=\{ \pm 1, \pm i, \pm j, \pm k\}$ where $i^{2}=j^{2}=k^{2}=-1$ and $i j=k, j k=i$, and $k i=j$, are:

$$
\{1\},\{ \pm 1\},\{ \pm 1, \pm i\},\{ \pm 1, \pm j\},\{ \pm 1, \pm k\}, Q
$$

and every subgroup is normal.
4.9b Claim: Let $\psi: G \rightarrow G^{\prime}$ and $\varphi: G^{\prime} \rightarrow G^{\prime \prime}$ be homomorphisms of groups. Then

$$
\operatorname{ker}(\varphi \circ \psi)=\psi^{-1}(\operatorname{ker}(\varphi)) \subset G .
$$

Proof. Obvious.

