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Homework #4 Solutions (due 10/3/06)
Chapter 2 Groups

Recall: Let G be a group. Fox € G let #x denote the order aof in G. The central mantra of orders
(proved in the previous solution set) is:

’x":e & #x|n‘

and the orde#z of x is the smallest such positive integer

Definitions/Facts: Aboutgcd andlcm. For positive integera andm define theirgreatest common
divisor to be the positive integeycd(n, m) characterized by the following equivalent conditions:
i) any common divisor ofi andm is a divisor ofged(n, m), i.e.a|n anda|m = a| gcd(n, m),

ii) ged(n,m) is the smallest positive integer that can be written in the form-im for &, € Z,

i) writing n = p{*---pSr andm = py' - -pfr as a product of powers of distinct prime num-
berspy,...,p, with nonnegative exponents, ..., e, f1,..., fr > 0, then we have that
ged(n,m) = pi' - p?” whereg; = min{e;, f;} fori =1,...,r.

For positive integers andm define theileast common multipl® be the positive integéem(n, m)
characterized by the following equivalent conditions:
i) any common multiple of andm is a multiple oflcm(n, m), i.e.n|b andm|b = lem(n, m)|b,

i) lem(n, m) is the smallest positive integer that can be written simultaneously in the&arm
andim for k,[ > 1, note that in this casg is the “reduced fraction” o%,

i) writing n = p{*---pt andm = py' -- -pr as a product of powers of distinct prime num-
berspy,...,p. with nonnegative exponents, ..., e,, f1,..., fr > 0, then we have that
ged(n,m) = pf' - - p?” whereg; = max{e;, f;} fori =1,...,r.

Thegcd andlem have the following useful properties:
e gcd(n,m) - lem(n,m) =n-m,
e n andm arerelatively prime & ged(n,m) =1 < lem(n,m) = nm,
e njm < ged(n,m) =n < lem(n,m) =m
2.10 Let G be a group.
a) Claim: If #x = rsfor somer, s > 1then#z" = s.

Proof. First note that(z")®* = x"® = e since#x = rs so#z" | s. Furthermore, for
0 < k < |s| we have thab < rk < r|s|, so that(z")* = 2% # e. So#z" reallyiss. O

b) Claim: If #2 = n then

n _ lem(n,r)

#a' =

ged(n,r) r
foranyr > 1.
Proof. Forl > 1 we have that

(") =2"=e < n|rl & nk=rlforsomek > 1,
and ifl = #a", i.e. the least possible su¢hthennk = rl = lem(n,m) is then the least
common multiple ofr andm. But then

#al =l= nTk B lcm(:7m) - gcd(z, m)’

where the final equality comes from the formula relatgad andlcm. O
1




2.11 Leta,b € G be elements of a group, and suppasés of finite ordemn. Then

(ab)"=e & a Hab)"a=a"ta=e & (alaba)" = < (ba)" =e,

where the second equivalence is exercise 3.4. dabss finite order angtba|n. Now similarly, for
0 < k < n we have
(ab)* #£e = a Y ab)fa#ala=¢ & (a taba)f #e & (ba)* # e,

and so indeed the order & is n. This also proves that iib has infinite order, then so doés.

2.16 LetG be acyclic group of ordet. Then an element € GG generates: if and only if #x = n.
Now fixing a generator: € G, we haveG = {e,z,22,...,2" 1}, and so in view of the formula
from exercise 2.10b, we see that

a" also generate§ & #z"' =n & =n & ged(n,r) =1

n

ged(n,r)
< risrelatively prime ton.

Thus in asking the question “how many of its elements gené&r@tewe are forced to deal with the

following number

en) = {r:0<r<nandged(n,r) =1}
= the number of numbers from 2, ..., n — 1 that are relatively prime te,
usually called théculer phi-functionof n.

a) Forn = 6, we see that of the numbets2, 3,4, 5, only 1,5 are relatively prime t®, so
©(6) = 2. For completeness I'll compute the cyclic subgroups generated by every element:

<e> = {e}

<zx> = {ex,2? 23 2% 25}
<2?> = {e2? 2%}

<x3> = {e, 2%}

<at> = {ext 2%}

<2®> = {e 2 2% 23 22 1}

and we see that only andz® are generators.
b) Why don’t we make a little table for = 2,...,12:

[n [ numbersl,...,n—1 | relatively primeton. | ¢(n) ||
2 |1 1 1
3 (1,2 1,2 2
4 11,2,3 1,3 2
5 |1,2,3,4 1,2,3,4 1
6 [1,2,3,4,5 15 2
7 11,2,3,4,5,6 1,2,3,4,5,6 6
8 [ 1,2,3,4,5,6,7 1,3,5,7 4
9 11,2,3,4,5,6,7,8 1,2,4,5,7,8 6
101,2,3,4,5,6,7,8,9 1,3,7,9 1
111,2,3,4,5,6,7,8,9,10 | 1,2,3,4,5,6,7,8,9,10 | 10
1211,2,3,4,5,6,7,8,9,10,11 | 1,5,7,11 4

c) As already noted, the number of elements that generate a cyclic group of.asdg(n).

2.20a Claim: Let x,y € G be commuting elements of a group and4et = n and#y = m. Then
all we can say is that

#xy | lem(n, m).



Proof. First, note that since andy commute,(zy)! = 2!y’ for all | € Z. Now letl = lem(n,m).
Then sincen |l andm | [, i.e. there exist, b > 1 such thal = an = bm, we know that

(zy)! = aly' = (@")*(y™)" = e’ =e,
thus#zy | lem(n, m). O

Note: The order#zy is difficult to relate exactly to the individual ordetsr and#y. For example,
let G =< a > be a cyclic group of ordes, then the following table displays the range of possible
behavior:

QI el lf|w

O O & O B W O R W N O R N

QIQ|IQ QXD QDD QR[] R

AW N N

| #a | #y | #ay | lem(Fa, #y) | =7 |
3 no
no
no
yes
no
yes
yes
no
yes
no
yes
no
yes
no
no

[N NN Y

(9]

N

oy

Qi | |||l |e|e|e|e|r
of AN N T w W N N N

D W WD W W W W DD
DD W DA W N DWW DWW D
WIN|W| W D | D= W O] W N
DD WD DD D W D W DD O O D

3.11 Claim: Let G be a group. Then the sétut(G) of group automorphisms a¥ forms a group
under composition.

Proof. We need to verify the group axioms for the dett(G) under the operation of composition.
First, we show thaf\ut(G) is closed under composition. We'll need the following:
Lemma: Lety, 4 : G — G be maps. Then
i) if ¢ andy are injective then so ig o ),
i) if ¢ andy are surjective then so iso v,
iii) if ¢ andy are bijective then so ig o ),
iv) if ¢ andy are group homomorphisms then sais 1,
v) if ¢ and¢) are group isomorphisms then sa4s 1.

Proof. Toi), letx,y € G, then
(o)) =(po)(y) = (@) =0Wy) = ¢ =¥y = z=y,

where the second and third implications followgfand+ are injective, respectively. Thyso ¢ is
injective.

Toii), letz € G, then since) is surjective, there exists € G such that)(z') = z. Sinceyp is
surjective, there exists” € G such thatp(z”) = 2/, But then

(o) (a") = p(y(z")) = p(a') = =,
S0 we see thap o v is surjective.
Toiiii) , combinei) andii).
Toiv), letx,y € G, then
(pov)(zy) = e(P(zy)) = e (@)(y)) = w(P(x)) L(Y(y)) = (P o) (z) (v o) (y),

if both ¢ andy are homomorphisms. So we indeed see ¢hat) is a homomorphism.
To v), combineiii) andiv). O



Thus we see that for automorphisms) € Aut(G) the compositionp o ¢ € Aut(G) is again an
automorphism, sdut(G) is closed under composition.

Next we quickly verify that composition is associative. kory, A € Aut(G) and forz € G we
have

((popp) o M)(x) = (po ) (M) = e(¥(A(x))) = (¥ o A)(x)) = (@ o (¥ 0 X)) (),
so that indeedy o ¥)) o A = ¢ o (¢ o \), SO composition is associative.
Next, we find an identity. Leid : G — G be the identity function, which is clearly an automor-
phism. Forp € Aut(G) and forx € G note that

(poid)(z) = ¢(id(z)) = ¢(z), and (idop)(x) =id(p(z)) = ¢ (z),
so that indeed o id = ¢ andid o ¢ = . Thusid € Aut(G) is indeed an identity.

Finally, we check that inverses exist, but we already did this in exescisé~or an isomorphism
¢ : G — G, we previously showed that the inverse function' : G — G is again an isomorphism,
and by definition satisfiegop~! = id andyp oy = id, sop~! is an inverse of for composition. So
indeed Aut(G) has inverses. We've finished showing thait(G) is a group under composition.]

3.14 Determining some automorphism groups.

a) We're already show thatut(Z) = {+id} in exerciset.4.

b) SinceZ/10Z is a cyclic group generated dy any homomorphisny : Z/10Z — Z/10Z
is completely defined by the image bf Now we also know by exercisk6a that if o is an
isomorphism, then it preserves orders of elements#(x) = #x for all x € Z/10Z. In
particular, a generator must be sent to a generator. Now in ex@rtiéie we already know
that the only elements ifi/10Z that generate arg, 3,7, 9. It's also easy to see that each of
the four choices of where to sendgives an automorphism &/10Z, so we’'ll label them
accordingly:

Aut(Z/10Z) = {1, ¢3, 97, P9 }-
Note thatp; = id. Now we compute the group structure Amt(Z/107Z). For example, for
x € Z/10Z, we have

(¢3 0 7)(z) = p3(pr(w)) = @3(Tx) = 3(Tx) = 21z = =,
so we find thatps o o7 = id = ¢1. Continuing like this we can calculate the multiplication
table forAut(Z/10Z):

Lolleilwslorlvo]
P1L P P3| LT
P3| P3| P9 | L1 Pr
P7 [ PT|PL|PI | L3
PP PT P3| ¥
Notice that we have a nice group isomorphism
(Z/10Z)* =  Aut(Z/10Z)

a = Pa

We also see that botbs, o7 € Aut(Z/10Z) have orded, i.e. they each generate. This shows
that Aut(Z/10Z) is cyclic, and we can construct two different isomorphisms

Z/AZ 5 Aut(Z/10Z) Z/AZ 5 Aut(Z/10Z)
0 — ¢ 0 — ¢
I — 3 I = 7
2 = 2 = g
3 = 7 3 = 3

neither of which seems particularly appealing, but just illustrates the two ways we can force
ourselves to think oAut(Z/10Z) as a cyclic group of ordet.



c) Writing S3 =< s,t : s2 = t3 = e,ts = st? >, we see that the symmetric groufs
is generated by elementst or orders2, 3, respectively, subject to a further relation. Any
automorphismp : S3 — S3 is determined by the images aft, and as before, must preserve
the orders of elements. Na$i has three elements st, st? of order2, and two elements t>
of order3. So any automorphism must takeo one ofs, st, s> andt to one oft, t2. There
are only six conceivable ways of doing this:

s — S s — st s — st?
t — t t — t t — t
s — S s — st s — st?
t — t2 t — t? t — t2

One now checks that each of these in fact does give an automorphiSgn ®husAut(.S3)

just consists of these six elements. We would further like to know the structuvatgbs).

One way to do this is to know that there are only two isomorphism classes of groups of
order six, namely cyclic of order six angs. We then just need to check if two of these
automorphisms don’t commute. In fadtit(S3) = S3. Another way to see this is to note
that the centeZ(.Ss3) is trivial, so that conjugation by each element%fgives a different
automorphism, since there are already six of these, these fill up alidfSs). Thus we have

the nice isomorphism

ad:S3 — Aut(S3)
r +— ady:y— zyz !,
in the notation from lab.
d) The analysis oAut(Z/8Z) follows exactly the same way as fémt(Z/10Z) in part b). In
the end, we find thahut(Z/8Z) = {¢1, ¢3, ¥5, 7} and we have the nice isomorphism

~

(Z/8Z)* — Aut(Z/8Z)
a = Pa
Incidentally, we check that each elementioft(Z/8Z) has order two, so thatut(Z/8Z) =
7)27 x 7.]27.

e) Is the automorphism group of a cyclic group necessarily cyclic? Well, no, see part d).

f) Is the automorphism group of an abelian group necessarily abelian? Well, no either. Take for
example the abelian grouy/27Z x 7. /27 x 7./27. Each permutation of the entries gives a
group automorphism, and as we know, permutations of three objects don't usually commute.
In particular, we see thatut(Z/2Z x Z/27Z x 7Z/27) has a subgroup isomorphic to the
permutation grous. Do you think that is the whole automorphism group?

4.8 Subgroups of groups.
a) The subgroups i =< s,t: s> =t3 = e, ts = st*> > are:
{6}7 {67 8}7 {67 St}, {67 8t2}7 {67 t7 t2}7 537
and{e}, {e, t,t*}, S3 are normal subgroups.
b) The subgroups of the quaternion gra@p= {+1, +i, +j, £k} wherei? = j2 = k? = —1
andij = k, jk = i, andki = j, are:
{1}, {£1}, {£1, L4}, {1, 5}, {£1, £k}, Q,
and every subgroup is hormal.

4.9b Claim: Lety : G — G’ andy : G’ — G” be homomorphisms of groups. Then
ker(p o)) = ¢~ (ker(p)) C G.
Proof. Obvious. O



