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Chapter 2 Groups

Recall: LetG be a group. Forx ∈ G let #x denote the order ofx in G. The central mantra of orders
(proved in the previous solution set) is:

xn = e ⇔ #x | n
and the order#x of x is the smallest such positive integern.

Definitions/Facts: About gcd andlcm. For positive integersn andm define theirgreatest common
divisor to be the positive integergcd(n,m) characterized by the following equivalent conditions:

i) any common divisor ofn andm is a divisor ofgcd(n,m), i.e.a|n anda|m⇒ a| gcd(n,m),
ii) gcd(n,m) is the smallest positive integer that can be written in the formkn+ lm for k, l ∈ Z,

iii) writing n = pe1
1 · · · per

r andm = pf1
1 · · · pfr

r as a product of powers of distinct prime num-
bersp1, . . . , pr with nonnegative exponentse1, . . . , er, f1, . . . , fr ≥ 0, then we have that
gcd(n,m) = pg1

1 · · · pgr
r wheregi = min{ei, fi} for i = 1, . . . , r.

For positive integersn andm define theirleast common multipleto be the positive integerlcm(n,m)
characterized by the following equivalent conditions:

i) any common multiple ofn andm is a multiple oflcm(n,m), i.e.n|b andm|b⇒ lcm(n,m)|b,
ii) lcm(n,m) is the smallest positive integer that can be written simultaneously in the formkn

andlm for k, l ≥ 1, note that in this caselk is the “reduced fraction” ofnm ,

iii) writing n = pe1
1 · · · per

r andm = pf1
1 · · · pfr

r as a product of powers of distinct prime num-
bersp1, . . . , pr with nonnegative exponentse1, . . . , er, f1, . . . , fr ≥ 0, then we have that
gcd(n,m) = pg1

1 · · · pgr
r wheregi = max{ei, fi} for i = 1, . . . , r.

Thegcd andlcm have the following useful properties:

• gcd(n,m) · lcm(n,m) = n ·m,
• n andm arerelatively prime⇔ gcd(n,m) = 1 ⇔ lcm(n,m) = nm,
• n|m ⇔ gcd(n,m) = n ⇔ lcm(n,m) = m

2.10 LetG be a group.

a) Claim: If #x = rs for somer, s ≥ 1 then#xr = s.

Proof. First note that(xr)s = xrs = e since#x = rs so #xr | s. Furthermore, for
0 < k < |s| we have that0 < rk < r|s|, so that(xr)k = xrk 6= e. So#xr really iss. �

b) Claim: If #x = n then

#xr =
n

gcd(n, r)
=

lcm(n, r)
r

.

for anyr ≥ 1.

Proof. For l ≥ 1 we have that

(xr)l = xrl = e ⇔ n|rl ⇔ nk = rl for somek ≥ 1,

and if l = #xr, i.e. the least possible suchl, thennk = rl = lcm(n,m) is then the least
common multiple ofn andm. But then

#xr = l =
nk

r
=

lcm(n,m)
r

=
n

gcd(n,m)
,

where the final equality comes from the formula relatinggcd andlcm. �
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2.11 Let a, b ∈ G be elements of a group, and supposeab is of finite ordern. Then

(ab)n = e ⇔ a−1(ab)na = a−1a = e ⇔ (a−1aba)n = e ⇔ (ba)n = e,

where the second equivalence is exercise 3.4. Thusba has finite order and#ba|n. Now similarly, for
0 < k < n we have

(ab)k 6= e ⇔ a−1(ab)ka 6= a−1a = e ⇔ (a−1aba)k 6= e ⇔ (ba)k 6= e,

and so indeed the order ofba is n. This also proves that ifab has infinite order, then so doesba.

2.16 LetG be a cyclic group of ordern. Then an elementx ∈ G generatesG if and only if #x = n.
Now fixing a generatorx ∈ G, we haveG = {e, x, x2, . . . , xn−1}, and so in view of the formula
from exercise 2.10b, we see that

xr also generatesG ⇔ #xr = n ⇔ n

gcd(n, r)
= n ⇔ gcd(n, r) = 1

⇔ r is relatively prime ton.

Thus in asking the question “how many of its elements generateG?” we are forced to deal with the
following number

ϕ(n) = |{r : 0 < r < n and gcd(n, r) = 1}|
= the number of numbers from1, 2, . . . , n− 1 that are relatively prime ton,

usually called theEuler phi-functionof n.

a) Forn = 6, we see that of the numbers1, 2, 3, 4, 5, only 1, 5 are relatively prime to6, so
ϕ(6) = 2. For completeness I’ll compute the cyclic subgroups generated by every element:

< e > = {e}
< x > = {e, x, x2, x3, x4, x5}
< x2 > = {e, x2, x4}
< x3 > = {e, x3}
< x4 > = {e, x4, x2}
< x5 > = {e, x5, x4, x3, x2, x}

and we see that onlyx andx5 are generators.
b) Why don’t we make a little table forn = 2, . . . , 12:

n numbers1, . . . , n− 1 relatively prime ton ϕ(n)
2 1 1 1
3 1, 2 1, 2 2
4 1, 2, 3 1, 3 2
5 1, 2, 3, 4 1, 2, 3, 4 4
6 1, 2, 3, 4, 5 1, 5 2
7 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 6
8 1, 2, 3, 4, 5, 6, 7 1, 3, 5, 7 4
9 1, 2, 3, 4, 5, 6, 7, 8 1, 2, 4, 5, 7, 8 6
10 1, 2, 3, 4, 5, 6, 7, 8, 9 1, 3, 7, 9 4
11 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 10
12 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 1, 5, 7, 11 4

c) As already noted, the number of elements that generate a cyclic group of ordern isϕ(n).

2.20a Claim: Let x, y ∈ G be commuting elements of a group and let#x = n and#y = m. Then
all we can say is that

#xy | lcm(n,m).



Proof. First, note that sincex andy commute,(xy)l = xlyl for all l ∈ Z. Now let l = lcm(n,m).
Then sincen | l andm | l, i.e. there exista, b ≥ 1 such thatl = an = bm, we know that

(xy)l = xlyl = (xn)a(ym)b = eaeb = e,

thus#xy | lcm(n,m). �

Note: The order#xy is difficult to relate exactly to the individual orders#x and#y. For example,
let G =< a > be a cyclic group of order6, then the following table displays the range of possible
behavior:

x y xy #x #y #xy lcm(#x,#y) “=”?

a a a2 6 6 3 6 no
a a2 a3 6 3 2 6 no
a a3 a4 6 2 3 6 no
a a4 a5 6 3 6 6 yes
a a5 e 6 6 1 6 no
a2 a2 a4 3 3 3 3 yes
a2 a3 a5 3 2 6 6 yes
a2 a4 e 3 3 1 3 no
a2 a5 a 3 6 6 6 yes
a3 a3 e 2 2 1 2 no
a3 a4 a 2 3 6 6 yes
a3 a5 a2 2 6 3 6 no
a4 a4 a2 3 3 3 3 yes
a4 a5 a3 3 6 2 6 no
a5 a5 a4 6 6 3 6 no

3.11 Claim: Let G be a group. Then the setAut(G) of group automorphisms ofG forms a group
under composition.

Proof. We need to verify the group axioms for the setAut(G) under the operation of composition.
First, we show thatAut(G) is closed under composition. We’ll need the following:

Lemma: Letϕ,ψ : G→ G be maps. Then

i) if ϕ andψ are injective then so isϕ ◦ ψ,
ii) if ϕ andψ are surjective then so isϕ ◦ ψ,

iii) if ϕ andψ are bijective then so isϕ ◦ ψ,
iv) if ϕ andψ are group homomorphisms then so isϕ ◦ ψ,
v) if ϕ andψ are group isomorphisms then so isϕ ◦ ψ.

Proof. To i), letx, y ∈ G, then

(ϕ ◦ ψ)(x) = (ϕ ◦ ψ)(y) ⇒ ϕ(ψ(x)) = ϕ(ψ(y)) ⇒ ψ(x) = ψ(y) ⇒ x = y,

where the second and third implications follow ifϕ andψ are injective, respectively. Thusϕ ◦ φ is
injective.

To ii) , let x ∈ G, then sinceψ is surjective, there existsx′ ∈ G such thatψ(x′) = x. Sinceϕ is
surjective, there existsx′′ ∈ G such thatϕ(x′′) = x′. But then

(ϕ ◦ ψ)(x′′) = ϕ(ψ(x′′)) = ϕ(x′) = x,

so we see thatϕ ◦ ψ is surjective.
To iii) , combinei) andii) .
To iv), letx, y ∈ G, then

(ϕ ◦ ψ)(xy) = ϕ(ψ(xy)) = ϕ(ψ(x)ψ(y)) = ϕ(ψ(x)) ϕ(ψ(y)) = (ϕ ◦ ψ)(x) (ϕ ◦ ψ)(y),

if bothϕ andψ are homomorphisms. So we indeed see thatϕ ◦ ψ is a homomorphism.
To v), combineiii) andiv). �



Thus we see that for automorphismsϕ,ψ ∈ Aut(G) the compositionϕ ◦ ψ ∈ Aut(G) is again an
automorphism, soAut(G) is closed under composition.

Next we quickly verify that composition is associative. Forϕ,ψ, λ ∈ Aut(G) and forx ∈ G we
have

((ϕ ◦ ψ) ◦ λ)(x) = (ϕ ◦ ψ)(λ(x)) = ϕ(ψ(λ(x))) = ϕ((ψ ◦ λ)(x)) = (ϕ ◦ (ψ ◦ λ))(x),

so that indeed(ϕ ◦ ψ) ◦ λ = ϕ ◦ (ψ ◦ λ), so composition is associative.
Next, we find an identity. Letid : G → G be the identity function, which is clearly an automor-

phism. Forϕ ∈ Aut(G) and forx ∈ G note that

(ϕ ◦ id)(x) = ϕ(id(x)) = ϕ(x), and (id ◦ ϕ)(x) = id(ϕ(x)) = ϕ(x),

so that indeedϕ ◦ id = ϕ andid ◦ ϕ = ϕ. Thusid ∈ Aut(G) is indeed an identity.
Finally, we check that inverses exist, but we already did this in exercise3.5. For an isomorphism

ϕ : G→ G, we previously showed that the inverse functionϕ−1 : G→ G is again an isomorphism,
and by definition satisfiesϕ◦ϕ−1 = id andϕ−1◦ϕ = id, soϕ−1 is an inverse ofϕ for composition. So
indeed,Aut(G) has inverses. We’ve finished showing thatAut(G) is a group under composition.�

3.14 Determining some automorphism groups.

a) We’re already show thatAut(Z) = {±id} in exercise4.4.
b) SinceZ/10Z is a cyclic group generated by1, any homomorphismϕ : Z/10Z → Z/10Z

is completely defined by the image of1. Now we also know by exercise3.6a that ifϕ is an
isomorphism, then it preserves orders of elements, i.e.#ϕ(x) = #x for all x ∈ Z/10Z. In
particular, a generator must be sent to a generator. Now in exercise2.16b, we already know
that the only elements inZ/10Z that generate are1, 3, 7, 9. It’s also easy to see that each of
the four choices of where to send1 gives an automorphism ofZ/10Z, so we’ll label them
accordingly:

Aut(Z/10Z) = {ϕ1, ϕ3, ϕ7, ϕ9}.
Note thatϕ1 = id. Now we compute the group structure onAut(Z/10Z). For example, for
x ∈ Z/10Z, we have

(ϕ3 ◦ ϕ7)(x) = ϕ3(ϕ7(x)) = ϕ3(7x) = 3(7x) = 21x = x,

so we find thatϕ3 ◦ ϕ7 = id = ϕ1. Continuing like this we can calculate the multiplication
table forAut(Z/10Z):

◦ ϕ1 ϕ3 ϕ7 ϕ9

ϕ1 ϕ1 ϕ3 ϕ7 ϕ9

ϕ3 ϕ3 ϕ9 ϕ1 ϕ7

ϕ7 ϕ7 ϕ1 ϕ9 ϕ3

ϕ9 ϕ9 ϕ7 ϕ3 ϕ1

Notice that we have a nice group isomorphism

(Z/10Z)× ∼−→ Aut(Z/10Z)
a 7→ ϕa

We also see that bothϕ3, ϕ7 ∈ Aut(Z/10Z) have order4, i.e. they each generate. This shows
thatAut(Z/10Z) is cyclic, and we can construct two different isomorphisms

Z/4Z ∼−→ Aut(Z/10Z) Z/4Z ∼−→ Aut(Z/10Z)
0 7→ ϕ1 0 7→ ϕ1

1 7→ ϕ3 1 7→ ϕ7

2 7→ ϕ9 2 7→ ϕ9

3 7→ ϕ7 3 7→ ϕ3

neither of which seems particularly appealing, but just illustrates the two ways we can force
ourselves to think ofAut(Z/10Z) as a cyclic group of order4.



c) Writing S3 =< s, t : s2 = t3 = e, ts = st2 >, we see that the symmetric groupS3

is generated by elementss, t or orders2, 3, respectively, subject to a further relation. Any
automorphismϕ : S3 → S3 is determined by the images ofs, t, and as before, must preserve
the orders of elements. NowS3 has three elementss, st, st2 of order2, and two elementst, t2

of order3. So any automorphism must takes to one ofs, st, s2 andt to one oft, t2. There
are only six conceivable ways of doing this:

s → s s → st s → st2

t → t t → t t → t

s → s s → st s → st2

t → t2 t → t2 t → t2

One now checks that each of these in fact does give an automorphism ofS3. ThusAut(S3)
just consists of these six elements. We would further like to know the structure ofAut(S3).
One way to do this is to know that there are only two isomorphism classes of groups of
order six, namely cyclic of order six andS3. We then just need to check if two of these
automorphisms don’t commute. In factAut(S3) ∼= S3. Another way to see this is to note
that the centerZ(S3) is trivial, so that conjugation by each element ofS3 gives a different
automorphism, since there are already six of these, these fill up all ofAut(S3). Thus we have
the nice isomorphism

ad : S3
∼−→ Aut(S3)

x 7→ adx : y 7→ xyx−1,

in the notation from lab.
d) The analysis ofAut(Z/8Z) follows exactly the same way as forAut(Z/10Z) in part b). In

the end, we find thatAut(Z/8Z) = {ϕ1, ϕ3, ϕ5, ϕ7} and we have the nice isomorphism

(Z/8Z)× ∼−→ Aut(Z/8Z)
a 7→ ϕa

Incidentally, we check that each element ofAut(Z/8Z) has order two, so thatAut(Z/8Z) ∼=
Z/2Z× Z/2Z.

e) Is the automorphism group of a cyclic group necessarily cyclic? Well, no, see part d).
f) Is the automorphism group of an abelian group necessarily abelian? Well, no either. Take for

example the abelian groupZ/2Z × Z/2Z × Z/2Z. Each permutation of the entries gives a
group automorphism, and as we know, permutations of three objects don’t usually commute.
In particular, we see thatAut(Z/2Z × Z/2Z × Z/2Z) has a subgroup isomorphic to the
permutation groupS3. Do you think that is the whole automorphism group?

4.8 Subgroups of groups.

a) The subgroups ofS3 =< s, t : s2 = t3 = e, ts = st2 > are:

{e}, {e, s}, {e, st}, {e, st2}, {e, t, t2}, S3,

and{e}, {e, t, t2}, S3 are normal subgroups.
b) The subgroups of the quaternion groupQ = {±1,±i,±j,±k} wherei2 = j2 = k2 = −1

andij = k, jk = i, andki = j, are:

{1}, {±1}, {±1,±i}, {±1,±j}, {±1,±k}, Q,
and every subgroup is normal.

4.9b Claim: Letψ : G→ G′ andϕ : G′ → G′′ be homomorphisms of groups. Then

ker(ϕ ◦ ψ) = ψ−1(ker(ϕ)) ⊂ G.

Proof. Obvious. �


