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Chapter 2 Groups (supplementary exercises)

Subgroups ofS4 It’s a general fact about symmetric groups, and in the case ofS4 a fact that I’ve
already told you, that the conjugacy classes are given by the “shapes” of the disjoint cycle decompo-
sition of the elements. In the case ofS4 the conjugacy classes are as follows:

e (· ·) (· ·)(· ·) (· · ·) (· · · ·)
e (12) (12)(34) (123) (1234)

(13) (13)(24) (132) (1342)
(14) (14)(23) (124) (1423)
(23) (142) (1243)
(24) (134) (1432)
(34) (143) (1324)

(234)
(243)

The subgroups ofS4 are the following:

n subgroups ofS4 of ordern ∼= type #
1 {e} C1 1
2 {e, (12)}, {e, (13)}, {e, (14)}, {e, (23)}, {e, (24)}, {e, (34)} C2 6

{e, (12)(34)}, {e, (13)(24)}, {e, (14)(23)} C2 3
3 {e, (123), (132)}, {e, (124), (142)}, {e, (134), (143)}, {e, (234), (243)} C3 4
4 {e, (12), (34), (12)(34)}, {e, (13), (24), (13)(24)}, {e, (14), (23), (14)(23)} C2 × C2 3

{e, (12)(34), (13)(24), (14)(23)} C2 × C2 1
{e, (1324), (12)(34), (1423)},
{e, (1234), (13)(24), (1432)},
{e, (1243), (14)(23), (1342)}

C4 3

6 {e, (123), (132), (12), (13), (23)}, {e, (124), (142), (12), (14), (24)},
{e, (134), (143), (13), (14), (34)}, {e, (234), (243), (23), (24), (34)} S3 4

8
{e, (12), (34), (12)(34), (13)(24), (14)(23), (1324), (1423)},
{e, (13), (24), (13)(24), (12)(34), (14)(23), (1234), (1432)},
{e, (14), (23), (14)(23), (12)(34), (13)(24), (1243), (1342)}

D4 3

12 {e, (12)(34), (13)(24), (14)(23), (123), (132), (124), (142), (134), (143),
(234), (243)} A4 1

24 S4 S4 1

Each row of the table contains a conjugacy class of subgroups. The last column lists the number of
subgroups in that conjugacy class. The second to the last column lists the isomorphism type, where
Ck denotes the cyclic group of orderk.

In all we see that there are30 different subgroups ofS4 divided into11 conjugacy classes and9
isomorphism types.

As discussed, normal subgroups are unions of conjugacy classes of elements, so we could pick
them out by staring at the list of conjugacy classes of elements. Also, by definition, a normal subgroup
is equal to all its conjugate subgroups, i.e. it only has one element in its conjugacy class. Thus the
four normal subgroups ofS4 are the ones in their own conjugacy class, i.e. rows1, 6, 10, and11.

Here are some general guidelines for determining which subgroups are conjugate. First a quick
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Definition: Let G be a group andS ⊂ G a subset ofG (not necessarily a subgroup).

• As usual, forg ∈ G, we write

gSg−1 = {gsg ∈ G : s ∈ S}
= {s′ ∈ G : s′ = gsg−1 for somes ∈ S}

for the conjugation of the subsetS by g ∈ G. When the setS = H ⊂ G is a subgroup, we
defined aconjugate subgroup ofH in G to be any subgroup of the formgHg−1 for g ∈ G.
Note that in particular, forS =< h > the cyclic subgroup generated byh ∈ G we have

g < h > g−1 =< ghg−1 >,

which is a consequence of Chapter2 exercise3.4a.
• Define thenormalizer ofS in G as

NG(S) = {g ∈ G : gSg−1 = S}
= {g ∈ G : gsg−1 ∈ S for all s ∈ S}.

• When the setS consists of a single elementS = {h} then the normalizer of{h} in G is also
called thecentralizer ofh in G

CG(h) = C(h) = {g ∈ G : ghg−1 = h},

i.e. the set of elements ofG that commute withh.

The idea is now that normalizers behave nicely under conjugation.

Lemma: Let G be a group andS ⊂ G be a subset.

i) NG(S) ⊂ G is a subgroup,
ii) for everyg ∈ G we have that

gNG(S)g−1 = NG(gSg−1),

in particular for centralizers, we getg C(h)g−1 = C(ghg−1).

Proof. To i), for g, g′ ∈ NG(S) we have

(gg′)N(gg′)−1 = g(g′Sg′
−1)g−1 = gSg−1 = S and gSg−1 = S ⇒ S = g−1Sg,

so thatNG(S) is closed under multiplication and has inverses. Of coursee ∈ NG(S). SoNG(S) ⊂ G
is a subgroup.

To ii) , let g′ ∈ NG(S) and letg ∈ G, then note that

(gg′g−1)(gSg−1)(gg′g−1)−1 = g(g′Sg′
−1)g−1 = gSg−1,

so thatgg′g−1 ∈ NG(gSg−1). ThusgNG(S)g−1 ⊂ NG(gSg−1). For the other containment, let
h ∈ NG(gSg−1). We want to show thath = gg′g−1 for someg′ ∈ NG(S), i.e. thatg′ := g−1hg ∈
NG(S). To that end, note that

g′Sg′
−1 = (g−1hg)S(g−1hg)−1 = g−1(h(gSg−1)h−1)g = g−1(gSg−1)g = S,

using in the third equality, the fact thath ∈ NG(gSg−1). So we see that indeedg′ = g−1hg ∈ NG(S).
So we haveNG(gSg−1) ⊂ gNG(S)g−1. Combining the two inclusions gives our claim. �

An immediate corollary of this is the following mantra of normalizers and conjugacy classes: let
C be a conjugacy class of elements (or subgroups) of a groupG, then

the set of normalizers of the members ofC ,
NG(C ) = {NG(S) : S ∈ C },

again forms a conjugacy class of subgroups.



Yet another way of expressing this is thatNG may be regarded as a function on the set of conjugacy
classes of subgroups.

Now we note that almost all of our subgroups can be identified as either cyclic subgroups or as
certain normalizers (or centralizers). Cyclic subgroups are easily divided into conjugacy classes in
view of the remark after the first part of the above definition, i.e. the conjugate of a cyclic subgroup
is the cyclic subgroup generated by the conjugate element. For non-cyclic subgroups, it’s harder to
locate an element that will simultaneously conjugate one entire subgroup into another. That’s why we
appeal to normalizers and centralizers. For example, the subgroups in the fifth row of the table can
be identified with centralizers two-cycles:

C((12)) = C((34)) = {e, (12), (34), (12)(34)},

C((13)) = C((24)) = {e, (13), (24), (13)(24)},

C((14)) = C((23)) = {e, (14), (23), (14)(23)},

and so since we know that the two cycles for a conjugacy class, we also know that their centralizers
form a conjugacy class of subgroups.

Similarly, the subgroups in the eighth row of the table can be identified with the normalizers of
cyclic subgroups generated by three-cycles:

NS4(< (123) >) = {e, (123), (132), (12), (13), (23)},

NS4(< (124) >) = {e, (124), (142), (12), (14), (24)},

NS4(< (134) >) = {e, (134), (143), (13), (14), (34)},

NS4(< (234) >) = {e, (234), (243), (23), (24), (34)},

and so since the three-cycles (hence their cyclic subgroups) form a conjugacy class, so do their nor-
malizers. Another way to view these subgroups is as the stabilizers of a given number, e.g.

{e, (123), (132), (12), (13), (23)} = {g ∈ S4 : g : 4 → 4},

and it’s an easy exercise to show that such stabilizing subgroups are conjugate.
Finally, the subgroups in the ninth row of the table can be identified with centralizers of disjoint

products of two cycles:

C((12)(34)) = {e, (12), (34), (12)(34), (13)(24), (14)(23), (1324), (1423)},

C((13)(24)) = {e, (13), (24), (13)(24), (12)(34), (14)(23), (1234), (1432)},

C((14)(23)) = {e, (14), (23), (14)(23), (12)(34), (13)(24), (1243), (1342)},

and again we see that these form a conjugacy class of elements hence of centralizers.
Another way of encapsulating this is as follows. Let the set of subgroups in therth row of the table

be denotedCr. Let C = {C1, . . . ,C11} be the set of conjugacy classes ofS4. Then as a function
NG : C → C one can verify that

C1 7→ C1 C2 7→ C5 C3 7→ C9 C4 7→ C8

C5 7→ C9 C6 7→ C6 C7 7→ C9 C8 7→ C11

C9 7→ C11 C10 7→ C10 C11 7→ C11.

The general philosophy is that humans like permutations groups. To understand subgroups of a group,
you want to think of them as the permutations of something. For subgroupsH,K ⊂ G, making the
identificationH = NG(K), really says that under the action ofH on G via conjugation (i.e. inner
automorphisms),H permutes the elements ofK.



Claim: For positive integersn andm we have

Z/nZ× Z/mZ ∼= Z/nmZ ⇔ gcd(n, m) = 1.

Proof. First off, we make the following observation. Leta ∈ Z/nZ, and consider the element(a, 0) ∈
Z/nZ× Z/mZ. Then

#a = #(a, 0),

where the order on the left is taken inZ/nZ and on the right taken inZ/nZ× Z/mZ.
Now, for the “⇐” direction, we first prove that in general

#(1, 1) = lcm(n, m).

To that end, first note that by Chapter2, exercise2.20a, we have that

#(1, 1) = #(1, 0) + (0, 1) | lcm(#(1, 0),#(0, 1)) = lcm(n, m).

Conversely, for positive integersr > 0, we have

r(1, 1) = (r, r) = (0, 0) ⇒ n | r andm | r ⇒ lcm(n, m) | r,

where the last implication follows from the general properties oflcm listed in solution set4. In par-
ticular, takingr = #(1, 1) we see thatlcm(n, m) |#(1, 1). Together we have finally that#(1, 1) =
lcm(n, m).

Now assuming thatgcd(n, m) = 1, we have thatlcm(n, m) = nm, and so#(1, 1) = nm. But
also, we know that the order of a product of finite groups is the product of the orders, i.e.

|Z/nZ× Z/mZ| = |Z/nZ| · |Z/mZ| = nm.

So we see that in factZ/nZ × Z/mZ is cyclic of ordernm with generator(1, 1), so is incidentally
isomorphic toZ/nmZ.

Now for the “⇒” direction, we prove the converse statement

gcd(n, m) > 1 ⇒ Z/nZ× Z/mZ 6∼= Z/nmZ.

Fora ∈ Z/nZ andb ∈ Z/mZ with #a = r and#b = s, we consider(a, b) ∈ Z/nZ× Z/mZ, and
as before, we have that

#(a, b) = #(a, 0) + (0, b)|lcm(#(a, 0),#(0, b)) = lcm(r, s) =
rs

gcd(r, s)
.

We want to show that#(a, b) < nm, which will show that every element has order less than the
order of the group, i.e. the group is not cyclic. To that end, note first that for eitherr < n or s < m,

#(a, b) | rs

gcd(r, s)
≤ rs < nm,

so we are left with the caser = n ands = m. But now by hypothesis,gcd(n, m) > 1, so we have

#(a, b) | nm

gcd(n, m)
< nm.

So in all cases,#(a, b) < nm for all (a, b) ∈ Z/n × Z/mZ, i.e.Z/n × Z/mZ cannot be cyclic, so
in particular, is not isomorphic toZ/nmZ. �



Chapter 3 Vector Spaces

2.1 Claim: The setQ(
√

2) of real numbers of the forma + b
√

2 for a, b ∈ Q forms a subfield of the
real numbers.

Proof. First note that fora, b, a′, b′ ∈ Q, we have

(a + b
√

2) + (a′ + b′
√

2) = (a + a′) + (b + b′)
√

2

and

(a + b
√

2)(a′ + b′
√

2) = (aa′ + 2bb′) + (ab′ + a′b)
√

2,

soQ(
√

2) is closed under addition and multiplication sinceQ is.
Second, note that sinceQ(

√
2) is a subset ofR, which we know is a field, associativity and com-

mutativity for + and · and distributivity hold. Also, note that0 = 0 + 0
√

2 ∈ Q(
√

2) and that
−(a + b

√
2) ∈ Q(

√
2). SoQ(

√
2) is an abelian subgroup ofR under+.

Finally, note that fora, bQ both nonzero,a2 − 2b2 ∈ Q is again nonzero since2 ∈ Q is not a
square, and in this case

a− b
√

2
a2 − 2b2

=
a

a2 − 2b2
+

−b

a2 − 2b2

√
2 ∈ Q(

√
2)

is a multiplicative inverse ofa + b
√

2 6= 0. ThusQ(
√

2) is a field. �

2.7 Definition: Let R,R′ be rings with1, then a mapϕ : R → R′ is aring homomorphismif

ϕ(x + y) = ϕ(x) + ϕ(y)
ϕ(xy) = ϕ(x)ϕ(y)
ϕ(1R) = 1R′

for all x, y ∈ R.
Claim: Let F be a field andR any ring with1, then any ring homomorphismϕ : F → R is injective.

Proof. Since, in particular,ϕ : F → R is a homomorphism of abelian groups under addition,ϕ is
injective if and only ifker ϕ = {0F }. To that end, we’ll argue by contradiction. Supposea ∈ ker ϕ
anda 6= 0F . SinceF is a field,a ∈ F has a multiplicative inversea−1 ∈ F and then

1R′ = ϕ(1F ) = ϕ(aa−1) = ϕ(a)ϕ(a−1) = 0R′ · ϕ(a−1) = 0R′ ,

which is a contradiction since0R′ 6= 1R′ for any ring with1 by definition. So onlya = 0 is possible,
i.e.ker ϕ = {0F }, andϕ is injective. �

2.8 We have the following table:

Z/2Z Z/3Z Z/7Z Z/11Z Z/13Z
5 1 2 5 5 5
−5 1 1 2 6 8
5−1 1 2 3 9 8

2.10 Consider the system of linear equations

(
8 3
2 6

) (
x1

x2

)
=

(
3
−1

)
over Fp for various

primesp. First note thatdet
(

8 3
2 6

)
= 42 = 2 · 3 · 7.



a) For primesp 6= 2, 3, 7, this determinant is nonzero (hence invertible), so the matrix is invertible,(
8 3
2 6

)−1

= 1
42

(
6 −3
−2 8

)
, and our system has the unique solution(

x1

x2

)
=

1
42

(
6 −3
−2 8

) (
3
−1

)
=

1
42

(
21
−14

)
=

1
6

(
3
−2

)
=

(
2−1

−3−1

)
.

So we have the table:
p 2−1 3−1 −3−1 solution

5 3 2 3
(

3
3

)
11 6 4 7

(
6
7

)
17 9 6 11

(
9
11

)
b) For p = 7 the matrix is no longer invertible, i.e. the two linear equations are now dependent,

so one is a scalar multiple of the other. In fact, we see that4 · (2, 6) = (8, 3). So now we have one
equation in two variables so we expect more solutions. Lets find them. The second row of the matrix
gives the linear equation

2x1 + 6x2 = −1 = 6,

and dividing through by2 gives
x1 + 3x2 = 3.

Thus for each choice ofx2 ∈ F7, we see thatx1 = 3−3x2 is determined. So there are seven possible
solutions. They are(

0
1

)
,

(
1
3

)
,

(
2
5

)
,

(
3
0

)
,

(
4
2

)
,

(
5
4

)
,

(
6
6

)
.

2.11 Note that the determinant of the matrix

A =

 1 2 0
0 3 −1
−2 0 2


is 10 = 2 · 5. Now A ∈ M3×3(Fp) is invertible if and only ifdet A ∈ Fp is nonzero, i.e.p 6 | det A.
This is only the case for all primesp 6= 2, 5.


