YALE UNIVERSITY DEPARTMENT OF MATHEMATICS Math 370 Fields and Galois Theory Spring 2018

Problem Set # 1 (due in class on Thursday 25 January)

Reading: GT 2, 3.

Problems:

1. GT Exercises 2.5, 2.6.

These lead you through an algebraic proof of the fact that if a polynomial with coefficients in \mathbb{C} gives the zero function, then it must be the zero polynomial (in the text, there is a proof using calculus, so don't assume this). As a consequence, we get that the map $\mathbb{C}[x] \to \operatorname{Map}(\mathbb{C}, \mathbb{C})$ is injective. While this can fail for polynomials over other fields, try to see what are the minimum set of requirements on the base field to make this algebraic argument work.

- 2. GT Exercises 3.1, 3.2, 3.3 (do only parts d and e for all of these).
- 3. GT Exercises 3.4 and also factor each of these polynoimals into irreducibles.
- 4. Irreducible polynomials over finite fields
 - Let \mathbb{F}_3 be the field with three elements.
 - (a) Determine all the monic irreducible polynomials of degree ≤ 3 in $\mathbb{F}_3[x]$.
 - (b) Determine the number of monic irreducible polynomials of degree 4 in $\mathbb{F}_3[x]$.

5. Prove that that two polynomials f(x) and g(x) in $\mathbb{Z}[x]$ are relatively prime in $\mathbb{Q}[x]$ if and only if the ideal $(f(x), g(x)) \subset \mathbb{Z}[x]$ contains a nonzero integer.

6. For this problem, recall the Math 350 problem on symmetric polynomials, and in particular, the parts on the generic polynomial and power sums.

(a) If x, y, z are complex numbers satisfying

x + y + z = 1, $x^{2} + y^{2} + z^{2} = 2,$ $x^{3} + y^{3} + z^{3} = 3,$

then prove that $x^n + y^n + z^n$ is rational for any positive integer n.

- (b) Calculate $x^4 + y^4 + z^4$.
- (c) Prove that each of x, y, z are not rational. **Hint.** An earlier problem will not help. Try looking modulo all primes < 20.