Yale University Department of Mathematics
Math 370 Fields and Galois Theory
Spring 2018
Problem Set \# 10 (due in class on Thursday April 26)
Notation: A field is algebraically closed if every nonconstant polynomial has a root.
Reading: GT 15.

## Problems:

1. GT Exercise 15.6. This shows the subtletly inherent in our notion of "radical" extension. It is quite subtle to come up with an example of a radical extension with a subextension that is not radical. Miki's hints. Use $x^{7}-1$. Do this very carefully. A simple extension $F(\alpha)$ can be radical even if $\alpha$ is not an $n$th root of anything in $F$ (e.g., $\mathbb{Q}(\omega))$. It would be very hard to prove that no generator is an $n$th root, so you need to find a different way to prove that a given extension is not radical. Finally, do this very very carefully.
2. GT Exercise 15.7. This is false if the polynomial is not irreducible; why?
3. Let $p$ be prime and $q=p^{n}$. Prove that $x^{q}-x \in \mathbb{F}_{p}[x]$ factors as the product of all distinct monic irreducible polynomials of degree dividing $n$ over $\mathbb{F}_{p}$.
4. Finite subgroups of fields. Let $F$ be a field. Understand at least three proofs, and then provide your favorite one, of the fact that every finite subgroup of the multiplicative group $F^{\times}$ is cyclic. For inspiration, see this MathOverflow post.
5. Fundamental Theorem of Algebra. An ordered field is a field $F$ together with a subset $F^{+}$ of positive elements satisfying: $a, b \in F^{+} \Rightarrow a+b \in F^{+}$and $a b \in F^{+}$and for each $a \in F$ exactly one of $a \in F^{+}, a=0$, or $-a \in F^{+}$is true.
(a) Prove that if $F$ is an ordered field then any nonzero square is positive, that -1 is not positive, and that $F$ has characteristic zero. Also, prove that $F(i)=F[x] /\left(x^{2}+1\right)$ is not an ordered field. Challenge. Prove that a field $F$ can be ordered if and only if -1 is not a sum of squares.
(b) An ordered field $F$ is called real closed if every positive element has a square root and every polynomial of odd degree over $F$ has a root. Prove that $\mathbb{R}$ and $\mathbb{R} \cap \overline{\mathbb{Q}}$ are real closed. Hint. You may need a tiny bit of analysis, but try to keep it to a minimum.
(c) Prove that a real closed field does not have any nontrivial finite extensions of odd degree.
(d) Prove that if $F$ is real closed then the only quadratic extension of $F$ is $F(i)$, and every element of $F(i)$ has a square root.
(e) Prove that a field $K$ is algebraically closed if and only if it does not admit any nontrivial algebraic extensions if and only if it does not admit any nontrivial finite extension.
(f) Prove that if $F$ is a real closed field then $F(i)$ is algebraically closed. Hint. First, let $L^{\prime} / F(i)$ be a finite extension and $L / F$ the normal closure of $L^{\prime} / F$. Then why is $L / F$ a Galois extension whose group $G$ has even order? Let $H \subset G$ be a Sylow 2-subgroup. Use the Galois correspondence with $H \subset G$ to prove that $G$ is actually a 2-group. Remember the result from abstract algebra that every finite $p$-group has a subgroup of index $p$, and use this, with the Galois correspondence, to prove that actually $G$ must be trivial.
(g) Deduce that $\mathbb{C}$ and $\overline{\mathbb{Q}}$ are algebraically closed.
6. Let $\alpha \in \mathbb{C}$ be algebraic of degree 4 over $\mathbb{Q}$. Prove that $\alpha$ is constructible if and only if the normal closure of $\mathbb{Q}(\alpha) / \mathbb{Q}$ has Galois group $C_{4}, V_{4}$ (Klein four), or $D_{8}$. Soon we'll see how to write down an explicit example that is not constructible.
