Yale University Department of Mathematics

Math 370 Fields and Galois Theory

Spring 2018
Problem Set \# 4 (due in class on Thursday 15 February)
Notation: For a positive integer n, write $\zeta_{n}=e^{2 \pi i / n} \in \mathbb{C}$.
Reading: GT 7.

Problems:

1. GT Exercise 7.3.

This is more of a historically interesting problem. We will prove that a general angle cannot be trisected using compass and straightedge. However, this shows you that if you have a "marked ruler" then you can trisect an angle. So the exact rules you are allowed to use in making compass and straightedge constructions are very important!
2. Let p be an odd prime. Prove that $\mathbb{Q}\left(\zeta_{p}\right)$ has degree $p-1$ over \mathbb{Q}. Prove that $\mathbb{Q}(\cos (2 \pi / p))$ has degree $(p-1) / 2$ over \mathbb{Q}.
Hint. These are related.
3. For $1 \leq n \leq 8$ find the minimal polynomial $\Phi_{n}(x)$ of ζ_{n} over \mathbb{Q}. For each $1 \leq n \leq 8$ compute $\prod_{d \mid n} \Phi_{d}(x)$, where the product is taken over all divisors of n (including 1 and n).
4. Determine the splitting field over \mathbb{Q}, in the form $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ for explicit $\alpha_{i} \in \mathbb{C}$, as well as its degree over \mathbb{Q}, for each of the following polynomials:
(a) $x^{3}-1$
(b) $x^{4}+5 x^{2}+6$
(c) $x^{6}-8$
5. Let F be a field and let $g(x)=x^{2}+b x+c \in F[x]$. Let K be the spitting field of g, so that $g(x)=(x-\alpha)(x-\beta)$ over K, for elements $\alpha, \beta \in K$.
(a) Prove that $(\alpha-\beta)^{2}=b^{2}-4 c \in F$. This is called the discriminant $\Delta(g)$ of the monic quadratic polynomial g.
Hint. Use elementary symmetric polynomials.
(b) Prove that $\Delta(g)=0$ if and only if g has repeated roots in K (i.e., α, β are not distinct).
(c) Assume that the characteristic of F is not 2. Prove that $K=F(\sqrt{\Delta(g)})$. Deduce that $g(x)$ is irreducible over F if and only if $\Delta(g)$ is not a square in F. Also, prove that $g(x)$ is a square in $F[x]$ if and only if $\Delta(g)=0$.
Hint. You are free to use the quadratic formula.
(d) Now let $F=\mathbb{F}_{2}(t)$ be the rational function field over \mathbb{F}_{2}. Let $g(x)=x^{2}-t \in F[x]$. Prove that $g(x)$ is irreducible over F, though it satisfies $\Delta(g)=0$. Show that the splitting field of $g(x)$ is the field extension $K=F(\sqrt{t}):=F[x] /(g(x))$ and find the roots of $g(x)$ over K. We don't know it yet, but K / F is called an inseparable quadratic extension.
Hint. First year's dream!
Weird stuff can happen with quadratic polynomials in characteristic 2 !
6. Let F be a field and let $f(x)=x^{3}+p x+q \in F[x]$. Let L be the spitting field of f, so that $f(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right)$ over L, for elements $\alpha_{1}, \alpha_{2}, \alpha_{3} \in L$.
(a) Prove that $\prod_{1 \leq i<j \leq 3}\left(\alpha_{i}-\alpha_{j}\right)^{2}=-4 p^{3}-27 q^{2} \in F$. This is called the discriminant $\Delta(f)$ of the monic cubic polynomial f.
Hint. Use elementary symmetric polynomials.
(b) Prove that $\Delta(f)=0$ if and only if f has repeated roots in L (i.e., $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are not distinct).
(c) Let $\alpha \in L$ be one of the roots of $f(x)$. Factor $f(x)=(x-\alpha) g(x)$ over $F(\alpha)$, where $g(x) \in F(\alpha)[x]$ is quadratic. Prove that $\Delta(f)=g(\alpha)^{2} \Delta(g)$.
(d) Assume that the characteristic of F is not 2 and let α be a root of $f(x)$. Prove that $L=F(\alpha, \sqrt{\Delta(f)})$. Deduce that if $\Delta(f)$ is a square in F then L has degree at most 3 over F, in particular, if $f(x)$ is reducible over F, then $L=F(\sqrt{\Delta(f)})$.
(e) Write down a monic irreducible cubic polynomial over $\mathbb{F}_{3}(t)$ whose discriminant is 0 , and factor it over its splitting field.
Hint. Think inseparable.
(f) Now let $F=\mathbb{F}_{2}(t)$ and let $f(x)=x^{3}+t x+t$. Prove that $f(x)$ is irreducible over F, has nonzero square discriminant, yet its splitting field L has degree 6 over F.
Hint. You may find it useful to use Gauss's Lemma for the ring $F[t]$, see Dummit and Foote, §9.3.
Weird stuff can happen with cubic polynomials in characteristics 2 and 3!

