Yale University Department of Mathematics

Math 370 Fields and Galois Theory

Spring 2018
Problem Set \# 6 (due in class on Thursday March 8)
Notation: Recall that C_{n} denotes an abstract cyclic group of order n written multiplicatively. Remember, the Galois group of a polynomial over a field F is defined to be the F-automorphism group of its splitting field.

Reading: GT 8, 9.1-9.2.

Problems:

1. Let K / F be a Galois extension with Galois group isomorphic to $C_{2} \times C_{12}$. How many subextensions of $K / M / F$ are there satisfying:
(a) $[M: F]=6$
(b) $[M: F]=9$
(c) $G(K / M)$ isomorphic to C_{6}
2. Compute the Galois group of the polynomial $f(x)=x^{3}-4 x+2 \in \mathbb{Q}[x]$. You cannot use any advanced theorems, like the Galois correspondence or the fact that splitting fields are Galois.
3. Let F be a field and $f(x) \in F[x]$ a monic polynomial of degree n. Let K be the spitting field of f over F, so that $f(x)=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)$ over K.
(a) Prove that $\prod_{1 \leq i<j \leq n}\left(\alpha_{i}-\alpha_{j}\right)^{2} \in F$. This is called the discriminant $\Delta(f)$ of f. Hint. Remember the Vandermonde determinant? Did you do this for $n=2,3$?
(b) Prove that $\Delta(f)=0$ if and only if $f(x)$ has a repeated root in K.
(c) Prove that if Δ is not a square in F then $[K: F]$ is even.
4. Let $F \subset \mathbb{R}$ be a subfield and $f(x) \in F[x]$ a cubic polynomial with discriminant Δ.
(a) You know that $\Delta=0$ if and only if $f(x)$ has a repeated root. Prove that in this case, all the roots of $f(x)$ are in F.
(b) Prove that $\Delta>0$ if and only if all the roots of $f(x)$ are real.
(c) Prove that $\Delta<0$ if and only if $f(x)$ a single real root and a pair of complex conjugate roots.
Try to think of what these conditions mean for polynomials of higher odd degree (e.g., degree 5).
5. Let p be a prime number and S_{p} the symmetric group on p things.
(a) Prove that an element of S_{p} has order p if and only if it is a p-cycle.
(b) Prove that S_{p} is generated by any choice of a p-cycle and a transposition. Find a composite n and a choice of an n-cycle and a transposition that do not generate S_{n}.
(c) Let $F \subset \mathbb{R}$ be a subfield. Prove that if $f(x) \in F[x]$ is an irreducible polynomial of degree p with all but two of its roots being real, then the Galois group of $f(x)$ over F is isomorphic to S_{p}. You can assume that the splitting field of $f(x)$ is a Galois extension.
(d) Let $F \subset \mathbb{R}$ be a subfield. Prove that if $f(x) \in F[x]$ is an irreducible cubic polynomial with $\Delta<0$, then the Galois group of $f(x)$ over F is isomorphic to S_{3}.
(e) Prove that the Galois group of the polynomial $x^{3}-x-1$ over \mathbb{Q} is isomorphic to S_{3}.
(f) Prove that the Galois group of the polynomial $x^{5}-x^{4}-x^{2}-x+1$ over \mathbb{Q} is isomorphic to S_{5}. Hint. You are allowed to use real analysis (e.g., the intermediate value theorem), but as a challenge, try to find a purely algebraic (possibly computer-aided) way.
