YALE UNIVERSITY DEPARTMENT OF MATHEMATICS Math 370 Fields and Galois Theory Spring 2018

Problem Set # 6 (due in class on Thursday March 8)

Notation: Recall that C_n denotes an abstract cyclic group of order n written multiplicatively. Remember, the Galois group of a polynomial over a field F is defined to be the F-automorphism group of its splitting field.

Reading: GT 8, 9.1-9.2.

Problems:

1. Let K/F be a Galois extension with Galois group isomorphic to $C_2 \times C_{12}$. How many subextensions of K/M/F are there satisfying:

- (a) [M:F] = 6
- (b) [M:F] = 9
- (c) G(K/M) isomorphic to C_6

2. Compute the Galois group of the polynomial $f(x) = x^3 - 4x + 2 \in \mathbb{Q}[x]$. You cannot use any advanced theorems, like the Galois correspondence or the fact that splitting fields are Galois.

3. Let F be a field and $f(x) \in F[x]$ a monic polynomial of degree n. Let K be the spitting field of f over F, so that $f(x) = (x - \alpha_1) \cdots (x - \alpha_n)$ over K.

- (a) Prove that $\prod_{1 \le i < j \le n} (\alpha_i \alpha_j)^2 \in F$. This is called the **discriminant** $\Delta(f)$ of f. **Hint.** Remember the Vandermonde determinant? Did you do this for n = 2, 3?
- (b) Prove that $\Delta(f) = 0$ if and only if f(x) has a repeated root in K.
- (c) Prove that if Δ is not a square in F then [K:F] is even.
- **4.** Let $F \subset \mathbb{R}$ be a subfield and $f(x) \in F[x]$ a cubic polynomial with discriminant Δ .
 - (a) You know that $\Delta = 0$ if and only if f(x) has a repeated root. Prove that in this case, all the roots of f(x) are in F.
 - (b) Prove that $\Delta > 0$ if and only if all the roots of f(x) are real.
 - (c) Prove that $\Delta < 0$ if and only if f(x) a single real root and a pair of complex conjugate roots.

Try to think of what these conditions mean for polynomials of higher odd degree (e.g., degree 5).

- 5. Let p be a prime number and S_p the symmetric group on p things.
 - (a) Prove that an element of S_p has order p if and only if it is a p-cycle.
 - (b) Prove that S_p is generated by any choice of a *p*-cycle and a transposition. Find a composite *n* and a choice of an *n*-cycle and a transposition that do not generate S_n .
 - (c) Let $F \subset \mathbb{R}$ be a subfield. Prove that if $f(x) \in F[x]$ is an irreducible polynomial of degree p with all but two of its roots being real, then the Galois group of f(x) over F is isomorphic to S_p . You can assume that the splitting field of f(x) is a Galois extension.
 - (d) Let $F \subset \mathbb{R}$ be a subfield. Prove that if $f(x) \in F[x]$ is an irreducible cubic polynomial with $\Delta < 0$, then the Galois group of f(x) over F is isomorphic to S_3 .
 - (e) Prove that the Galois group of the polynomial $x^3 x 1$ over \mathbb{Q} is isomorphic to S_3 .
 - (f) Prove that the Galois group of the polynomial $x^5 x^4 x^2 x + 1$ over \mathbb{Q} is isomorphic to S_5 . **Hint.** You are allowed to use real analysis (e.g., the intermediate value theorem), but as a challenge, try to find a purely algebraic (possibly computer-aided) way.