Yale University Department of Mathematics
Math 370 Fields and Galois Theory
Spring 2018
Problem Set \# 7 (due in class on Thursday March 29; have a great Spring break!)
Notation: Let F be a field of characteristic $p>0$. Define the Frobenius map $\phi: F \rightarrow F$ by $\phi(x)=x^{p}$. By the "first-year's dream" the Frobenius map is a ring homomorphism. We call F perfect if the Frobenius map is surjective (equivalently, is a field automorphism), i.e., if every element of F has a p th root. By definition, we say that any field of characteristic 0 is perfect.

Reading: GT 9, 17.4-17.5.

Problems:

1. Prove that if F is a perfect field, then any irreducible polynomial $f(x) \in F[x]$ is separable. In class, we proved the case when F has characteristic 0 , though it was a bit rushed. For completeness, redo this case nicely in your proof.
2. All about finite fields.
(a) Prove that a finite field K has characteristic p for some prime number p, and in this case, is a finite extension of \mathbb{F}_{p}. In particular, $|K|=p^{n}$ for some $n \geq 1$. Hint. Prime field.
(b) Prove that any finite field K is perfect and that $\phi \in \operatorname{Aut}_{\mathbb{F}_{p}}(K)$.
(c) Prove that if K is a finite field of order $q=p^{n}$, then K is the splitting field of the polynomial $x^{q}-x \in \mathbb{F}_{p}[x]$. Hint. Consider the multiplicative group K^{\times}.
(d) Prove that for any $q=p^{n}$, the polynomial $x^{q}-x \in \mathbb{F}_{p}[x]$ is separable and its splitting field K over \mathbb{F}_{p} is a field with q elements. Hint. Show that the set of elements of K fixed by ϕ^{n} (the Frobenius automorphism composed with itself n times) coincides with the roots of $x^{q}-x$. Why does this show that the set of roots of $x^{q}-x$ is itself a subfield of K, and hence actually all of K ?
(e) Prove that for any prime power $q=p^{n}$, there exists a unique isomorphism class of field of order q, i.e, there exists a field of order q and any two such fields are isomorphic. We call such a field \mathbb{F}_{q}.
(f) Prove that for $q=p^{n}$, the extension $\mathbb{F}_{q} / \mathbb{F}_{p}$ is Galois with Galois group cyclic of order n generated by the Frobenius ϕ.
(g) Even though you now know they are isomorphic, find an explicit isomorphism between the fields $\mathbb{F}_{2}[x] /\left(x^{3}+x^{2}+1\right)$ and $\mathbb{F}_{2}[x] /\left(x^{3}+x+1\right)$.
3. Let F be a field and $g \in F[x]$. Prove that the map $D_{g}: F[x] \rightarrow F[x]$ defined by $D_{g}(f)=g f^{\prime}$ is an F-derivation. Prove that every F-derivation of $F[x]$ is of this form.
4. An F-derivation on an F-algebra R is called trivial if it takes every element to zero.
(a) Let $f(x) \in \mathbb{Q}[x]$ be a quadratic polynomial. Give necessary and sufficient conditions on $f(x)$ for the quotient ring $\mathbb{Q}[x] /(f(x))$ to admit a non-trivial \mathbb{Q}-derivation. Hint. In the quotient ring, we have $f(\bar{x})=0$; try applying your \mathbb{Q}-derivation to both sides, thinking about the cases when f is irreducible, reducible, or has a multiple root.
(b) Let F be a field of characteristic $p>0$ and $K=F(\alpha)$ a simple extension of F such that the minimal polynomial of α over F is not separable. Prove that K has a nontrivial F-derivation. Hint. Try the "derivative with respect to α "; why does it make sense?
