Yale University Department of Mathematics

Math 370 Fields and Galois Theory

Spring 2018
Problem Set \# 9 (due in class on Thursday April 19)
Notation: You can use the Primitive Element Theorem, which we will prove next week, which states that every finite separable extension is simple.

Reading: GT 12, 13.

Problems:

1. Let K / F be a Galois extension with group S_{3}.
(a) Prove that there exists an irreducible polynomial $f(x) \in F[x]$ of degree 6 whose splitting field is K.
(b) Assume that the characteristic of F is not 2. Prove that there exists an irreducible polynomial $f(x) \in F[x]$ of degree 3 whose splitting field is K.
Remark. The cubic is more intuitive than the sextic, though slightly harder to prove.
2. Give an example of a finite extension of fields that is not simple. (It had to come eventually.)
3. More about prime cyclotomic extensions.
(a) Let p be a prime number. What is the Galois group of the splitting field K / \mathbb{Q} of the polynomial $x^{p}-1 \in \mathbb{Q}[x]$?
(b) In the cases $p=5$ and $p=7$, compute simple generators for each subfield, prove that each is normal over \mathbb{Q}, express each as the splitting field of an irreducible polynomial over \mathbb{Q}, and draw the lattices of subfields and subgroups of the Galois group.
(c) Find a Galois extension L / \mathbb{Q} whose Galois group is cyclic of order 5 and an irreducible polynomial of degree 5 over \mathbb{Q} whose splitting field is L. Hint. You can use cyclotomics.
4. Let L / \mathbb{Q} be a Galois extension whose Galois group is cyclic of order 4. Prove that its unique quadratic subextension K / \mathbb{Q} is real (i.e., $K=\mathbb{Q}(\sqrt{d})$ with $d>0$). Hint. Complex conjugation.
5. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible quartic polynomial and $K=\mathbb{Q}(\alpha)$, where α is a root of $f(x)$. Let $G \subset S_{4}$ be the Galois group of the splitting field of $f(x)$ over \mathbb{Q}. Prove that K / \mathbb{Q} has no nontrivial intermediate subfields if and only if $G=A_{4}$ or $G=S_{4}$.
