YALE UNIVERSITY DEPARTMENT OF MATHEMATICS Math 370 Fields and Galois Theory Spring 2018

Problem Set # 9 (due in class on Thursday April 19)

Notation: You can use the Primitive Element Theorem, which we will prove next week, which states that every finite separable extension is simple.

Reading: GT 12, 13.

Problems:

1. Let K/F be a Galois extension with group S_3 .

- (a) Prove that there exists an irreducible polynomial $f(x) \in F[x]$ of degree 6 whose splitting field is K.
- (b) Assume that the characteristic of F is not 2. Prove that there exists an irreducible polynomial $f(x) \in F[x]$ of degree 3 whose splitting field is K. **Remark.** The cubic is more intuitive than the sextic, though slightly harder to prove.
- 2. Give an example of a finite extension of fields that is not simple. (It had to come eventually.)
- 3. More about prime cyclotomic extensions.
 - (a) Let p be a prime number. What is the Galois group of the splitting field K/\mathbb{Q} of the polynomial $x^p 1 \in \mathbb{Q}[x]$?
 - (b) In the cases p = 5 and p = 7, compute simple generators for each subfield, prove that each is normal over \mathbb{Q} , express each as the splitting field of an irreducible polynomial over \mathbb{Q} , and draw the lattices of subfields and subgroups of the Galois group.
 - (c) Find a Galois extension L/\mathbb{Q} whose Galois group is cyclic of order 5 and an irreducible polynomial of degree 5 over \mathbb{Q} whose splitting field is L. **Hint.** You can use cyclotomics.

4. Let L/\mathbb{Q} be a Galois extension whose Galois group is cyclic of order 4. Prove that its unique quadratic subextension K/\mathbb{Q} is real (i.e., $K = \mathbb{Q}(\sqrt{d})$ with d > 0). **Hint.** Complex conjugation.

5. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible quartic polynomial and $K = \mathbb{Q}(\alpha)$, where α is a root of f(x). Let $G \subset S_4$ be the Galois group of the splitting field of f(x) over \mathbb{Q} . Prove that K/\mathbb{Q} has no nontrivial intermediate subfields if and only if $G = A_4$ or $G = S_4$.