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Midterm Exam 1 Review Sheet

Directions: The first midterm exam will take place in class on Thursday, February 22.
You will have the entire class period, 75 minutes, to complete the exam. No electronic
devices will be allowed. No notes will be allowed. On all problems, you will need to write
your thoughts/proofs in a coherent way to get full credit.

Topics covered and practice problems:

• Fields. Field extensions. Finite extensions. Degree. Power law. Algebraic and
transcendental extensions. Finitely generated fields. Quadratic formula.

• Polynomial rings F [x] and Z[x]. Euclidean division. Euclidean algorithm. Irre-
ducible polynomials. Ideal theory. Unique factorization.

• Irreducibility criteria. Reduction modulo p. Quadratic and cubic polynomials and
their discriminants (formulas provided). Gauss’s lemma. Primitive polynomials.
Eisenstein criterion. Irreducible polynomials over Fp.

• Classification of simple extensions. Minimal polynomial.

• Splitting fields.

• Compass and straightedge. Constructable points. Pythagorean closure.

Practice exam questions:

1. For which prime numbers p ≤ 20 is the polynomial x2 + x+ 1 irreducible over Fp?

2. Prove that the following polynomials are irreducible over Q: x2 + 3x− 45, x3 − x+ 56,
3x4 + 6x+ 125, x6 − 5x3 + 1, 15x7 + 12x5 + 10x3 + 8x− 6, 7x7 − 6x6 + 4x4 − 2x2 + x− 21.
Hint. For the 5th one, search in Wikipedia for “Reciprocal polynomial.”

3. Prove that the ideal generated by x2 − x+ 1 and 5 in Z[x] is a maximal ideal.

4. Factor x5 + 1 over the field F2.

5. Determine whether the roots of the polynomial x4− 5x2 + 1 are algebraic over Q and/or
real and/or constructible.

6. For each of the following polynomials over Q, determine the degree (over Q) of its splitting
field, and a set of at most two generators: 2x2 + 3x+ 4, x3 − 21x− 28, x6 − 1, x7 − 1.

7. Find a simple generator for the field extensions Q(
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8. Compute the minimal polynomial over Q of the following algebraic numbers:
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9. Let π ∈ R be the area of a unit circle and let α =
√
π2 + 2. Consider the field K =

Q(π, α). For the following field extensions, determine whether they are transcendental
and/or algebraic and/or finite and/or simple, and if you determine the extension is simple
and algebraic, find a simple generator and determine its minimal polynomial:
K/Q, K/Q(π), K/Q(α), K/Q(π + α).


