Yale University Department of Mathematics
Math 370 Fields and Galois Theory
Spring 2019
Problem Set \# 1 (due in class on Thursday 24 January)
Notation: If R is a commutative ring with 1 , denote by $R\left[x_{1}, \ldots, x_{n}\right]$ the ring of polynomials in the variables x_{1}, \ldots, x_{n} with coefficients in R.
Reading: FT 1, pp. 6-12.
Problems:

1. For each of the following pairs of polynomials $f, g \in \mathbb{Q}[x]$ find: the quotient and remainder after dividing f by g; the gcd of f and g; and the expression of this gcd in the form $a f+b g$ for some $a, b \in \mathbb{Q}[x]$.
(a) $f(x)=x^{4}-1, g(x)=x^{2}+1$
(b) $f(x)=x^{4}-1, g(x)=3 x^{2}+3 x$
2. Decide whether each of the following polynomials is irreducible, and if not, then find the factorization into monic irreducibles.
(a) $x^{4}+1 \in \mathbb{R}[x]$
(b) $x^{4}+1 \in \mathbb{Q}[x]$
(c) $x^{7}+11 x^{3}-33 x+22 \in \mathbb{Q}[x]$
(d) $x^{4}+x^{3}+x^{2}+x+1 \in \mathbb{Q}[x]$
(e) $x^{3}-7 x^{2}+3 x+3 \in \mathbb{Q}[x]$
3. Irreducible polynomials over finite fields. Let \mathbb{F}_{3} be the field with three elements.
(a) Determine all the monic irreducible polynomials of degree ≤ 3 in $\mathbb{F}_{3}[x]$.
(b) Determine the number of monic irreducible polynomials of degree 4 in $\mathbb{F}_{3}[x]$.
4. Prove that two polynomials $f, g \in \mathbb{Z}[x]$ are relatively prime in $\mathbb{Q}[x]$ (i.e., they share no common nonconstant factor) if and only if the ideal $(f, g) \subset \mathbb{Z}[x]$ contains a nonzero integer.
5. Let F be a field and x_{1}, \ldots, x_{n} be variables. Consider the Vandermonde matrix

$$
V=\left(\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n-1} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n-1}
\end{array}\right)
$$

(a) Prove that $\operatorname{det}(V)=\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)$. You can do row and column reduction and use the multilinear properties of the determinant in order to set up a proof by induction.
(b) Assume that $n<|F|$, in particular, any n is allowed if F is infinite. Prove that if a polynomial $f(x) \in F[x]$ of degree n satisfies $f(a)=0$ for all $a \in F$, then $f(x)$ is the zero polynomial. In conclusion, show that if F is infinite, the evaluation homomorphism $F[x] \rightarrow \operatorname{Map}(F, F)$, defined by $f \mapsto(a \mapsto f(a))$, is injective.
(c) Show that if $F=\mathbb{F}_{p}$, then $f(x)=x^{p}-x$ has every field element as a root. In this case, prove that $x^{p}-x$ generates the whole kernel of the evaluation homomorphism.
6. Symmetric polynomials. Let R be a commutative ring with 1 and x_{1}, \ldots, x_{n} be variables.
(a) Consider the symmetric group S_{n} acting on the set $\left\{x_{1}, \ldots, x_{n}\right\}$ by permutations. Extend this action to $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. For example, if $\sigma=(123) \in S_{3}$, then

$$
\sigma \cdot\left(x_{1} x_{2}-2 x_{3}^{2}+3 x_{2} x_{3}^{2}\right)=x_{2} x_{3}-2 x_{1}^{2}+3 x_{3} x_{1}^{2} .
$$

Prove that this action satisfies $\sigma \cdot(f+g)=\sigma \cdot f+\sigma \cdot g$ and $\sigma \cdot(f g)=(\sigma \cdot f)(\sigma \cdot g)$ for all $\sigma \in S_{n}$ and all $f, g \in R\left[x_{1}, \ldots, x_{n}\right]$. Hint. Consider monomials.
(b) Let $S \subset R\left[x_{1}, \ldots, x_{n}\right]$ be the set of multivariable polynomials that are fixed under the action of S_{n}. Prove that S is a subring with 1 . This is called the ring of symmetric polynomials.
(c) For each $n \geq 0$, define polynomials $e_{i} \in R\left[x_{1}, \ldots, x_{n}\right]$ by $e_{0}=1$ and

$$
e_{1}=x_{1}+\cdots+x_{n}, \quad e_{2}=\sum_{1 \leq i<j \leq n} x_{i} x_{j}, \quad \ldots, \quad e_{n}=x_{1} \cdots x_{n}
$$

and $e_{k}=0$ for $k>n$. In words, e_{k} is the sum of all distinct products of subsets of k distinct variables. Prove that each e_{k} is a symmetric polynomial. These are called the elementary symmetric polynomials.
(d) The generic polynomial of degree n is the polynomial

$$
f(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)
$$

in the ring $R\left[x_{1}, \ldots, x_{n}\right][x]$ of polynomials in x with coefficients in $R\left[x_{1}, \ldots, x_{n}\right]$. Prove (by induction) that
$f(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)=x^{n}-e_{1} x^{n-1}+e_{2} x^{n-2}+\cdots+(-1)^{n} e_{n}=\sum_{j=0}^{n}(-1)^{n-j} e_{n-j} x^{j}$.
(e) For each $k \geq 1$, define the power sums $p_{k}=x_{1}^{k}+\cdots+x_{n}^{k}$ in $R\left[x_{1}, \ldots, x_{n}\right]$. Clearly, the power sums are symmetric. Verify the following identities by hand:

$$
p_{1}=e_{1}, \quad p_{2}=e_{1} p_{1}-2 e_{2}, \quad p_{3}=e_{1} p_{2}-e_{2} p_{1}+3 e_{3}
$$

In general Newton's identities in $R\left[x_{1}, \ldots, x_{n}\right]$ are (recall that $e_{k}=0$ for $k>n$):

$$
p_{k}-e_{1} p_{k-1}+e_{2} p_{k-2}-\cdots+(-1)^{k-1} e_{k-1} p_{1}+(-1)^{k} k e_{k}=0 .
$$

Prove Newton's identities whenever $k \geq n$.
Hint. For each i, consider the equation in part (d) for $f\left(x_{i}\right)$ and sum all these equations together. This gives Newton's identity for $k=n$. Set extra variables to zero to get the identities for $k>n$ from this. (Fun. Can you come up with a proof when $1 \leq k \leq n$?)
7. Use the force, my Newton!
(a) If x, y, z are complex numbers satisfying

$$
x+y+z=1, \quad x^{2}+y^{2}+z^{2}=2, \quad x^{3}+y^{3}+z^{3}=3,
$$

then prove that $x^{n}+y^{n}+z^{n}$ is rational for any positive integer n.
(b) Calculate $x^{4}+y^{4}+z^{4}$.
(c) Prove that each of x, y, z are not rational numbers.

