YALE UNIVERSITY DEPARTMENT OF MATHEMATICS Math 370 Fields and Galois Theory Spring 2019

Problem Set # 1 (due in class on Thursday 24 January)

Notation: If R is a commutative ring with 1, denote by $R[x_1, \ldots, x_n]$ the ring of polynomials in the variables x_1, \ldots, x_n with coefficients in R.

Reading: FT 1, pp. 6–12.

Problems:

1. For each of the following pairs of polynomials $f, g \in \mathbb{Q}[x]$ find: the quotient and remainder after dividing f by g; the gcd of f and g; and the expression of this gcd in the form af + bg for some $a, b \in \mathbb{Q}[x]$.

- (a) $f(x) = x^4 1, g(x) = x^2 + 1$
- (b) $f(x) = x^4 1, g(x) = 3x^2 + 3x$

2. Decide whether each of the following polynomials is irreducible, and if not, then find the factorization into monic irreducibles.

(a)
$$x^4 + 1 \in \mathbb{R}[x]$$

(b)
$$x^4 + 1 \in \mathbb{Q}[x]$$

- (c) $x^7 + 11x^3 33x + 22 \in \mathbb{Q}[x]$
- (d) $x^4 + x^3 + x^2 + x + 1 \in \mathbb{Q}[x]$
- (e) $x^3 7x^2 + 3x + 3 \in \mathbb{Q}[x]$
- **3.** Irreducible polynomials over finite fields. Let \mathbb{F}_3 be the field with three elements.
 - (a) Determine all the monic irreducible polynomials of degree ≤ 3 in $\mathbb{F}_3[x]$.
 - (b) Determine the number of monic irreducible polynomials of degree 4 in $\mathbb{F}_3[x]$.

4. Prove that two polynomials $f, g \in \mathbb{Z}[x]$ are relatively prime in $\mathbb{Q}[x]$ (i.e., they share no common nonconstant factor) if and only if the ideal $(f,g) \subset \mathbb{Z}[x]$ contains a nonzero integer.

5. Let F be a field and x_1, \ldots, x_n be variables. Consider the **Vandermonde matrix**

$$V = \begin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{pmatrix}$$

- (a) Prove that $det(V) = \prod_{1 \le i < j \le n} (x_j x_i)$. You can do row and column reduction and use the multilinear properties of the determinant in order to set up a proof by induction.
- (b) Assume that n < |F|, in particular, any n is allowed if F is infinite. Prove that if a polynomial f(x) ∈ F[x] of degree n satisfies f(a) = 0 for all a ∈ F, then f(x) is the zero polynomial. In conclusion, show that if F is infinite, the evaluation homomorphism F[x] → Map(F, F), defined by f ↦ (a ↦ f(a)), is injective.</p>
- (c) Show that if $F = \mathbb{F}_p$, then $f(x) = x^p x$ has every field element as a root. In this case, prove that $x^p x$ generates the whole kernel of the evaluation homomorphism.

- **6.** Symmetric polynomials. Let R be a commutative ring with 1 and x_1, \ldots, x_n be variables.
 - (a) Consider the symmetric group S_n acting on the set $\{x_1, \ldots, x_n\}$ by permutations. Extend this action to $R[x_1, x_2, \ldots, x_n]$. For example, if $\sigma = (123) \in S_3$, then

 $\sigma \cdot (x_1 x_2 - 2x_3^2 + 3x_2 x_3^2) = x_2 x_3 - 2x_1^2 + 3x_3 x_1^2.$

Prove that this action satisfies $\sigma \cdot (f+g) = \sigma \cdot f + \sigma \cdot g$ and $\sigma \cdot (fg) = (\sigma \cdot f)(\sigma \cdot g)$ for all $\sigma \in S_n$ and all $f, g \in R[x_1, \ldots, x_n]$. Hint. Consider monomials.

- (b) Let $S \subset R[x_1, \ldots, x_n]$ be the set of multivariable polynomials that are fixed under the action of S_n . Prove that S is a subring with 1. This is called the **ring of symmetric polynomials**.
- (c) For each $n \ge 0$, define polynomials $e_i \in R[x_1, \ldots, x_n]$ by $e_0 = 1$ and

$$e_1 = x_1 + \dots + x_n, \quad e_2 = \sum_{1 \le i < j \le n} x_i x_j, \quad \dots, \quad e_n = x_1 \cdots x_n$$

and $e_k = 0$ for k > n. In words, e_k is the sum of all distinct products of subsets of k distinct variables. Prove that each e_k is a symmetric polynomial. These are called the **elementary symmetric polynomials**.

(d) The **generic polynomial** of degree n is the polynomial

$$f(x) = (x - x_1)(x - x_2) \cdots (x - x_n)$$

in the ring $R[x_1, \ldots, x_n][x]$ of polynomials in x with coefficients in $R[x_1, \ldots, x_n]$. Prove (by induction) that

$$f(x) = (x - x_1)(x - x_2) \cdots (x - x_n) = x^n - e_1 x^{n-1} + e_2 x^{n-2} + \dots + (-1)^n e_n = \sum_{j=0}^n (-1)^{n-j} e_{n-j} x^j.$$

(e) For each $k \ge 1$, define the **power sums** $p_k = x_1^k + \cdots + x_n^k$ in $R[x_1, \ldots, x_n]$. Clearly, the power sums are symmetric. Verify the following identities by hand:

$$p_1 = e_1, \quad p_2 = e_1 p_1 - 2e_2, \quad p_3 = e_1 p_2 - e_2 p_1 + 3e_3$$

In general **Newton's identities** in $R[x_1, \ldots, x_n]$ are (recall that $e_k = 0$ for k > n):

$$p_k - e_1 p_{k-1} + e_2 p_{k-2} - \dots + (-1)^{k-1} e_{k-1} p_1 + (-1)^k k e_k = 0$$

Prove Newton's identities whenever $k \ge n$.

Hint. For each *i*, consider the equation in part (d) for $f(x_i)$ and sum all these equations together. This gives Newton's identity for k = n. Set extra variables to zero to get the identities for k > n from this. (Fun. Can you come up with a proof when $1 \le k \le n$?)

- 7. Use the force, my Newton!
 - (a) If x, y, z are complex numbers satisfying

x + y + z = 1, $x^{2} + y^{2} + z^{2} = 2,$ $x^{3} + y^{3} + z^{3} = 3,$

then prove that $x^n + y^n + z^n$ is rational for any positive integer n.

- (b) Calculate $x^4 + y^4 + z^4$.
- (c) Prove that each of x, y, z are not rational numbers.

YALE UNIVERSITY, DEPARTMENT OF MATHEMATICS, 10 HILLHOUSE AVE, NEW HAVEN, CT 06511 *E-mail address*: asher.auel@yale.edu