Problem Set \# 2 (due in class on Thursday 31 January)
Notation: Let F be a field. As defined in FG p. 13, if K and K^{\prime} are field extensions of F, an F-homomorphism $\varphi: K \rightarrow K^{\prime}$ is a ring homomorphism such that $\varphi(c)=c$ for all $c \in F$. An F-isomorphism of field extensions is a bijective F-homomorphism.
Reading: FT pp. 11-17

Problems:

1. The goal is to prove that $f(x)=x^{4}+1 \in \mathbb{Z}[x]$ is reducible modulo every prime number p. You already know (PS\#1) that $f(x)$ irreducible, and here you'll give a different proof (probably).
(a) Factor $f(x)$ modulo 2.
(b) Assume that $-1=u^{2}$ is a square in \mathbb{F}_{p}. Then use the equality $x^{4}+1=x^{4}-u^{2}$ to factor $f(x)$ modulo p.
(c) Assume that p is odd and $2=v^{2}$ is a square in \mathbb{F}_{p}. Then use the equality $x^{4}+1=$ $\left(x^{2}+1\right)^{2}-(v x)^{2}$ to factor $f(x)$ modulo p.
(d) Prove that if p is odd and neither -1 nor 2 is a square in \mathbb{F}_{p}, then -2 is a square. Use this to factor $f(x)$ modulo p. Conclude that $x^{4}+1$ is reducible modulo every prime p.
(e) Prove that $f(x)$ is irreducible by using the Eisenstein criterion. Hint. Use the same trick that works for $x^{4}+x^{3}+x^{2}+x+1$.
2. Assume that for some prime number p, the reduction of a monic polynomial $f(x) \in \mathbb{Z}[x]$ factors into a product $\bar{f}(x)=\bar{g}(x) \bar{h}(x)$ of monic irreducible polynomials in $\mathbb{F}_{p}[x]$. Prove that if $f(x)$ is reducible in $\mathbb{Z}[x]$, then it must factor into a product $f(x)=g(x) h(x)$ of monic irreducible polynomials $g(x), h(x) \in \mathbb{Z}[x]$ that reduce to $\bar{g}(x), \bar{h}(x) \in \mathbb{F}_{p}[x]$, respectively.

Use this idea to factor the following polynomials in $\mathbb{Q}[x]$, using reduction mod 2 :
(a) $x^{2}+2345 x+125$
(b) $x^{3}+5 x^{2}+10 x+5$
(c) $x^{4}+2 x^{3}+2 x^{2}+2 x+2$
(d) $x^{4}+2 x^{3}+3 x^{2}+2 x+1$
(e) $x^{5}+x^{4}-4 x^{3}+2 x^{2}+4 x+1$
3. Let K and K^{\prime} be field extensions of a field F.
(a) Prove that any F-homomorphism $\varphi: K \rightarrow K^{\prime}$ is injective.
(b) Prove that if K^{\prime} / F is finite and $\varphi: K \rightarrow K^{\prime}$ is an F-homomorphism, then K / F is finite.
(c) Assume that both K and K^{\prime} are finite over F, and that $\varphi: K \rightarrow K^{\prime}$ is an F-homomorphism. The φ is an F-isomorphism if and only if $[K: F]=\left[K^{\prime}: F\right]$.
(d) Prove that $f(x)=x^{2}-4 x+2 \in \mathbb{Q}[x]$ is irreducible, hence the quotient ring $K=$ $\mathbb{Q}[x] /(f(x))$ is a field extension of \mathbb{Q} by FT p. 16. Prove that the extensions K and $\mathbb{Q}(\sqrt{2})$ of \mathbb{Q} are \mathbb{Q}-isomorphic and exhibit an explicit F-isomorphism between them.
4. At the end of this problem, prove that $\mathbb{Q}(\sqrt{2}, i)$ and $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ have degree 4 over \mathbb{Q}.
(a) Prove that the complex numbers $1, \sqrt{2}, i, \sqrt{2} i$ are linearly independent over \mathbb{Q}.

Hint. Use real and imaginary considerations.
(b) Prove that the real numbers $1, \sqrt{2}, \sqrt{3}, \sqrt{6}$ are linearly independent over \mathbb{Q}.

Hint. Show that a dependence would imply $\sqrt{3}=a+b \sqrt{2}$, then square both sides.
5. Let $\alpha \approx-1.7693$ be the real root of $x^{3}-2 x+2$. In the extension $\mathbb{Q}(\alpha) / \mathbb{Q}$, write the element $(\alpha+1)^{-1}$ explicitly as a polynomial in α with coefficients in \mathbb{Q}.

