YALE UNIVERSITY DEPARTMENT OF MATHEMATICS Math 370 Fields and Galois Theory Spring 2019

Problem Set # 2 (due in class on Thursday 31 January)

Notation: Let F be a field. As defined in FG p. 13, if K and K' are field extensions of F, an F-homomorphism $\varphi : K \to K'$ is a ring homomorphism such that $\varphi(c) = c$ for all $c \in F$. An F-isomorphism of field extensions is a bijective F-homomorphism.

Reading: FT pp. 11–17

Problems:

1. The goal is to prove that $f(x) = x^4 + 1 \in \mathbb{Z}[x]$ is reducible modulo every prime number p. You already know (PS#1) that f(x) irreducible, and here you'll give a different proof (probably).

- (a) Factor f(x) modulo 2.
- (b) Assume that $-1 = u^2$ is a square in \mathbb{F}_p . Then use the equality $x^4 + 1 = x^4 u^2$ to factor f(x) modulo p.
- (c) Assume that p is odd and $2 = v^2$ is a square in \mathbb{F}_p . Then use the equality $x^4 + 1 = (x^2 + 1)^2 (vx)^2$ to factor f(x) modulo p.
- (d) Prove that if p is odd and neither -1 nor 2 is a square in \mathbb{F}_p , then -2 is a square. Use this to factor f(x) modulo p. Conclude that $x^4 + 1$ is reducible modulo every prime p.
- (e) Prove that f(x) is irreducible by using the Eisenstein criterion. Hint. Use the same trick that works for $x^4 + x^3 + x^2 + x + 1$.

2. Assume that for some prime number p, the reduction of a monic polynomial $f(x) \in \mathbb{Z}[x]$ factors into a product $\overline{f}(x) = \overline{g}(x)\overline{h}(x)$ of monic irreducible polynomials in $\mathbb{F}_p[x]$. Prove that if f(x) is reducible in $\mathbb{Z}[x]$, then it must factor into a product f(x) = g(x)h(x) of monic irreducible polynomials $g(x), h(x) \in \mathbb{Z}[x]$ that reduce to $\overline{g}(x), \overline{h}(x) \in \mathbb{F}_p[x]$, respectively.

- Use this idea to factor the following polynomials in $\mathbb{Q}[x]$, using reduction mod 2:
- (a) $x^2 + 2345x + 125$
- (b) $x^3 + 5x^2 + 10x + 5$
- (c) $x^4 + 2x^3 + 2x^2 + 2x + 2$
- (d) $x^4 + 2x^3 + 3x^2 + 2x + 1$
- (e) $x^5 + x^4 4x^3 + 2x^2 + 4x + 1$

3. Let K and K' be field extensions of a field F.

- (a) Prove that any F-homomorphism $\varphi: K \to K'$ is injective.
- (b) Prove that if K'/F is finite and $\varphi: K \to K'$ is an F-homomorphism, then K/F is finite.
- (c) Assume that both K and K' are finite over F, and that $\varphi : K \to K'$ is an F-homomorphism. The φ is an F-isomorphism if and only if [K : F] = [K' : F].
- (d) Prove that $f(x) = x^2 4x + 2 \in \mathbb{Q}[x]$ is irreducible, hence the quotient ring $K = \mathbb{Q}[x]/(f(x))$ is a field extension of \mathbb{Q} by FT p. 16. Prove that the extensions K and $\mathbb{Q}(\sqrt{2})$ of \mathbb{Q} are \mathbb{Q} -isomorphic and exhibit an explicit F-isomorphism between them.
- **4.** At the end of this problem, prove that $\mathbb{Q}(\sqrt{2}, i)$ and $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ have degree 4 over \mathbb{Q} .
 - (a) Prove that the complex numbers $1, \sqrt{2}, i, \sqrt{2}i$ are linearly independent over \mathbb{Q} . **Hint.** Use real and imaginary considerations.
 - (b) Prove that the real numbers $1, \sqrt{2}, \sqrt{3}, \sqrt{6}$ are linearly independent over \mathbb{Q} . **Hint.** Show that a dependence would imply $\sqrt{3} = a + b\sqrt{2}$, then square both sides.

5. Let $\alpha \approx -1.7693$ be the real root of $x^3 - 2x + 2$. In the extension $\mathbb{Q}(\alpha)/\mathbb{Q}$, write the element $(\alpha + 1)^{-1}$ explicitly as a polynomial in α with coefficients in \mathbb{Q} .