YALE UNIVERSITY DEPARTMENT OF MATHEMATICS Math 370 Fields and Galois Theory Spring 2019

Problem Set # 3 (due in class on Thursday 7 February)

Notation: Let *F* be a field. A field extension K/F is **simple** if $K = F(\alpha)$ for some $\alpha \in K$ and is **finitely generated** if $K = F(\alpha_1, \ldots, \alpha_n)$ for finitely many elements $\alpha_1, \ldots, \alpha_n \in K$.

Reading: FT pp. 14–19.

Problems:

1. Let F be a field of characteristic $\neq 2$ (i.e., $2 \neq 0$ in F) and let K/F be a field extension of degree 2. Prove that there exists $\alpha \in K$ with $\alpha^2 \in F$ such that $K = F(\alpha)$.

2. For each extension K/F and each element $\alpha \in K$, find the minimal polynomial of α over K (and prove that it is the minimal polynomial).

(a) i in \mathbb{C}/\mathbb{R} (b) i in \mathbb{C}/\mathbb{Q} (c) $(1+\sqrt{5})/2$ in \mathbb{R}/\mathbb{Q} (d) $\sqrt{2+\sqrt{2}}$ in \mathbb{R}/\mathbb{Q}

3. Let $\pi \in \mathbb{R}$ be the area of a unit circle and let $\alpha = \sqrt{\pi^2 + 2}$. Consider the field $K = \mathbb{Q}(\pi, \alpha)$. For the following field extensions, determine whether they are transcendental and/or algebraic and/or finite and/or simple, and if you determine the extension is simple and algebraic, find a simple generator and determine its minimal polynomial.

(a) K/\mathbb{Q} (b) $K/\mathbb{Q}(\pi)$ (c) $K/\mathbb{Q}(\alpha)$ (d) $K/\mathbb{Q}(\pi+\alpha)$

4. Factor $x^3 + x + 1$ in $\mathbb{F}_p[x]$ for all primes $p \leq 11$.

5. Prove that any finitely generated (not necessarily finite) extension of a countable field is countable. Use this to deduce that \mathbb{R} is not a finitely generated extension of \mathbb{Q} .

6. Let p and q be distinct prime numbers. Prove that $\mathbb{Q}(\sqrt{p} + \sqrt{q}) = \mathbb{Q}(\sqrt{p}, \sqrt{q})$ and find the minimal polynomial of $\sqrt{p} + \sqrt{q}$ over \mathbb{Q} .

7. Let $a \in \mathbb{Q}$ be positive and not a square. Prove that $\mathbb{Q}(\sqrt[4]{a})$ has degree 4 over \mathbb{Q} .

8. Let F be a field. We know that if $K = F(\alpha)$ and α has minimal polynomial m(x), then m(x) has a root over K. So over K, we can factor $m(x) = (x - \alpha)n(x)$. What more can we say in general about the factorization of m(x) over K, i.e., how does n(x) factor further?

- (a) Let $\alpha = \cos(2\pi/9) \in \mathbb{R}$. Prove that α is algebraic over \mathbb{Q} and find its minimal polynomial m(x). (**Hint.** Try taking $e^{2\pi i/9}$ to various small powers.) Prove that m(x) factors into linear factors over $\mathbb{Q}(\alpha)$. (**Hint.** One way is to divide m(x) by $x \alpha$ over the field $\mathbb{Q}(\alpha)$. The quotient will have degree 2, then use the quadratic formula.)
- (b) Let $\alpha = \sqrt[3]{2} \in \mathbb{R}$. Prove that α is algebraic over \mathbb{Q} and find its minimal polynomial m(x). Prove that m(x) does not factor into linear factors over $\mathbb{Q}(\alpha)$.

9. Prove that if K/F is algebraic and L/K is algebraic, then L/F is algebraic. (You cannot assume that these extensions are finite.)

10. Let *F* be a field of characteristic $\neq 2$.

- (a) Let $a_1, \ldots, a_n \in F$ be distinct elements such that no product $a_{i_1} \cdots a_{i_r}$, with distinct indices i_j , is a square in F. Prove that $K = F(\sqrt{a_1}, \ldots, \sqrt{a_n})$ has degree 2^n over F.
- (b) Prove that the field $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{7}, \sqrt{11}, \dots)$ gotten by adjoining the square roots of all prime numbers to \mathbb{Q} , is an infinite degree algebraic extension of \mathbb{Q} .