Yale University Department of Mathematics

Math 370 Fields and Galois Theory

Spring 2019
Problem Set \# 3 (due in class on Thursday 7 February)
Notation: Let F be a field. A field extension K / F is simple if $K=F(\alpha)$ for some $\alpha \in K$ and is finitely generated if $K=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ for finitely many elements $\alpha_{1}, \ldots, \alpha_{n} \in K$.

Reading: FT pp. 14-19.

Problems:

1. Let F be a field of characteristic $\neq 2$ (i.e., $2 \neq 0$ in F) and let K / F be a field extension of degree 2. Prove that there exists $\alpha \in K$ with $\alpha^{2} \in F$ such that $K=F(\alpha)$.
2. For each extension K / F and each element $\alpha \in K$, find the minimal polynomial of α over K (and prove that it is the minimal polynomial).
(a) i in \mathbb{C} / \mathbb{R}
(b) i in \mathbb{C} / \mathbb{Q}
(c) $(1+\sqrt{5}) / 2$ in \mathbb{R} / \mathbb{Q}
(d) $\sqrt{2+\sqrt{2}}$ in \mathbb{R} / \mathbb{Q}
3. Let $\pi \in \mathbb{R}$ be the area of a unit circle and let $\alpha=\sqrt{\pi^{2}+2}$. Consider the field $K=\mathbb{Q}(\pi, \alpha)$. For the following field extensions, determine whether they are transcendental and/or algebraic and/or finite and/or simple, and if you determine the extension is simple and algebraic, find a simple generator and determine its minimal polynomial.
(a) K / \mathbb{Q}
(b) $K / \mathbb{Q}(\pi)$
(c) $K / \mathbb{Q}(\alpha)$
(d) $K / \mathbb{Q}(\pi+\alpha)$
4. Factor $x^{3}+x+1$ in $\mathbb{F}_{p}[x]$ for all primes $p \leq 11$.
5. Prove that any finitely generated (not necessarily finite) extension of a countable field is countable. Use this to deduce that \mathbb{R} is not a finitely generated extension of \mathbb{Q}.
6. Let p and q be distinct prime numbers. Prove that $\mathbb{Q}(\sqrt{p}+\sqrt{q})=\mathbb{Q}(\sqrt{p}, \sqrt{q})$ and find the minimal polynomial of $\sqrt{p}+\sqrt{q}$ over \mathbb{Q}.
7. Let $a \in \mathbb{Q}$ be positive and not a square. Prove that $\mathbb{Q}(\sqrt[4]{a})$ has degree 4 over \mathbb{Q}.
8. Let F be a field. We know that if $K=F(\alpha)$ and α has minimal polynomial $m(x)$, then $m(x)$ has a root over K. So over K, we can factor $m(x)=(x-\alpha) n(x)$. What more can we say in general about the factorization of $m(x)$ over K, i.e., how does $n(x)$ factor further?
(a) Let $\alpha=\cos (2 \pi / 9) \in \mathbb{R}$. Prove that α is algebraic over \mathbb{Q} and find its minimal polynomial $m(x)$. (Hint. Try taking $e^{2 \pi i / 9}$ to various small powers.) Prove that $m(x)$ factors into linear factors over $\mathbb{Q}(\alpha)$. (Hint. One way is to divide $m(x)$ by $x-\alpha$ over the field $\mathbb{Q}(\alpha)$. The quotient will have degree 2 , then use the quadratic formula.)
(b) Let $\alpha=\sqrt[3]{2} \in \mathbb{R}$. Prove that α is algebraic over \mathbb{Q} and find its minimal polynomial $m(x)$. Prove that $m(x)$ does not factor into linear factors over $\mathbb{Q}(\alpha)$.
9. Prove that if K / F is algebraic and L / K is algebraic, then L / F is algebraic. (You cannot assume that these extensions are finite.)
10. Let F be a field of characteristic $\neq 2$.
(a) Let $a_{1}, \ldots, a_{n} \in F$ be distinct elements such that no product $a_{i_{1}} \cdots a_{i_{r}}$, with distinct indices i_{j}, is a square in F. Prove that $K=F\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{n}}\right)$ has degree 2^{n} over F.
(b) Prove that the field $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{7}, \sqrt{11}, \ldots)$ gotten by adjoining the square roots of all prime numbers to \mathbb{Q}, is an infinite degree algebraic extension of \mathbb{Q}.
