Yale University Department of Mathematics
Math 370 Fields and Galois Theory
Spring 2019
Problem Set \# 5 (due in class on Thursday February 28)
Notation: Let K and L be subfields of a field M. The compositum of K and L, denoted $K L$, is defined to be the smallest subfield of M containing both K and L, equivalently, the intersection of all subfields of M containing K and L. If additionally K and L are both extensions of a field F, we say that the extensions K / F and L / F are linearly disjoint if any F-linearly independent subset of K is L-linearly independent in $K L$ and if any F-linearly independent subset of L is K-linearly independent in $K L$.

Problems:

1. Let F be a field and K / F and L / F be subextensions of a field extension M / F.
(a) Prove that if $K=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $L=F\left(\beta_{1}, \ldots, \beta_{m}\right)$ are finitely generated, then $K L=F\left(\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{m}\right)$.
(b) Prove that if K / F and L / F are finite then $K L / F$ is finite and $[K L: F] \leq[K: F][L: F]$ with equality if and only if K / F and L / F are linearly disjoint.
Hint. Prove that if x_{1}, \ldots, x_{n} is an F-basis for K and y_{1}, \ldots, y_{m} is an F-basis for L, then the products $x_{i} y_{j}$ for $1 \leq i \leq n$ and $1 \leq j \leq m$ span $K L / F$ and are an F-basis if and only if K / F and L / F are linearly disjoint.
(c) Prove that finite extensions K / F and L / F of relatively prime degree are linearly disjoint. (Now you can do Problem 5a on Midterm 1 easily!)
(d) Let $f(x)$ be an irreducible polynomial over F and K / F a finite extension. Prove that if $\operatorname{deg}(f)$ and $[K: F]$ are relatively prime, then $f(x)$ is still irreducible over K.
This is a generalization of Problem 7 on Problem set 4 . Hint. Use the previous part.
(e) Prove that if K / F and L / F are linearly disjoint then $K \cap L=F$. Find an example showing that the converse is false.
2. Let F be a field, $f(x)$ a polynomial over F with splitting field E / F.
(a) Let K / F be a subextension of E / F. Prove that E / K is a splitting field of $f(x)$ considered as a polynomial over K.
(b) Prove that if $\operatorname{deg}(f)=n$ then $[E: F]$ divides n !. (We only had $[E: F] \leq n$! before.) Hint. Use induction on n, and deal with cases of f reducible or irreducible separately. At some point you'll need the fact that $a!b$! divides $(a+b)$!, which you should also prove.
3. Let F be a field and $f(x) \in F[x]$ a monic polynomial of degree n. Let E be a spitting field of f over F, so that $f(x)=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)$ over E.
(a) Prove that $\prod_{1 \leq i<j \leq n}\left(\alpha_{i}-\alpha_{j}\right)^{2} \in F$. This is called the discriminant $\Delta(f)$ of f. Hint. Remember the Vandermonde and the elementary symmetric polynomials?
(b) Prove that $\Delta(f)=0$ if and only if $f(x)$ has a repeated root in E.
(c) Prove that if Δ is not a square in F then $[E: F]$ is even. Hint. The tower law.
4. Let F be a field and let $f(x)=x^{3}+p x+q \in F[x]$. Let E be the spitting field of f, so that $f(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right)$ over E, for elements $\alpha_{1}, \alpha_{2}, \alpha_{3} \in E$.
(a) Prove that $\Delta(f)=-4 p^{3}-27 q^{2}$. Hint. Use elementary symmetric polynomials.
(b) Let $\alpha \in E$ be one of the roots of $f(x)$. Factor $f(x)=(x-\alpha) g(x)$ over $F(\alpha)$, where $g(x) \in F(\alpha)[x]$ is quadratic. Prove that $\Delta(f)=g(\alpha)^{2} \Delta(g)$.
(c) Assume that the characteristic of F is not 2 and let α be a root of $f(x)$. Prove that $E=F(\alpha, \sqrt{\Delta(f)})$. Deduce that if $\Delta(f)$ is a square in F then E has degree at most 3 over F, in particular, if $f(x)$ is reducible over F, then $E=F(\sqrt{\Delta(f)})$.
(d) Write down a monic irreducible cubic polynomial over $\mathbb{F}_{3}(t)$ whose discriminant is 0 , and factor it over its splitting field.
Hint. Think inseparable. You've already seen this.
(e) Now let $F=\mathbb{F}_{2}(t)$ and let $f(x)=x^{3}+t x+t$. Prove that $f(x)$ is irreducible over F, has nonzero square discriminant, yet its splitting field E has degree 6 over F.
Hint. As before, use the Eisenstein criterion and Gauss's lemma for polynomials over the ring $\mathbb{F}_{2}[t]$.
Weird stuff can happen with cubic polynomials in characteristics 2 and 3!
5. Let $F \subset \mathbb{R}$ be a subfield and $f(x) \in F[x]$ a cubic polynomial with discriminant Δ.
(a) You know that $\Delta=0$ if and only if $f(x)$ has a repeated root. Prove that in this case, all the roots of $f(x)$ are in F.
(b) Prove that $\Delta>0$ if and only if all the roots of $f(x)$ are real.
(c) Prove that $\Delta<0$ if and only if $f(x)$ a single real root and a pair of complex conjugate roots.
Try to think of what these conditions mean for polynomials of higher odd degree (e.g., degree 5).
