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Problem Set # 5 (due in class on Thursday February 28)

Notation: Let K and L be subfields of a field M . The compositum of K and L, denoted KL,
is defined to be the smallest subfield of M containing both K and L, equivalently, the intersection
of all subfields of M containing K and L. If additionally K and L are both extensions of a field
F , we say that the extensions K/F and L/F are linearly disjoint if any F -linearly independent
subset of K is L-linearly independent in KL and if any F -linearly independent subset of L is
K-linearly independent in KL.

Problems:

1. Let F be a field and K/F and L/F be subextensions of a field extension M/F .

(a) Prove that if K = F (α1, . . . , αn) and L = F (β1, . . . , βm) are finitely generated, then
KL = F (α1, . . . , αn, β1, . . . , βm).

(b) Prove that if K/F and L/F are finite then KL/F is finite and [KL : F ] ≤ [K : F ] [L : F ]
with equality if and only if K/F and L/F are linearly disjoint.
Hint. Prove that if x1, . . . , xn is an F -basis for K and y1, . . . , ym is an F -basis for L,
then the products xiyj for 1 ≤ i ≤ n and 1 ≤ j ≤ m span KL/F and are an F -basis if
and only if K/F and L/F are linearly disjoint.

(c) Prove that finite extensions K/F and L/F of relatively prime degree are linearly disjoint.
(Now you can do Problem 5a on Midterm 1 easily!)

(d) Let f(x) be an irreducible polynomial over F and K/F a finite extension. Prove that if
deg(f) and [K : F ] are relatively prime, then f(x) is still irreducible over K.
This is a generalization of Problem 7 on Problem set 4. Hint. Use the previous part.

(e) Prove that if K/F and L/F are linearly disjoint then K ∩ L = F . Find an example
showing that the converse is false.

2. Let F be a field, f(x) a polynomial over F with splitting field E/F .

(a) Let K/F be a subextension of E/F . Prove that E/K is a splitting field of f(x) considered
as a polynomial over K.

(b) Prove that if deg(f) = n then [E : F ] divides n!. (We only had [E : F ] ≤ n! before.)
Hint. Use induction on n, and deal with cases of f reducible or irreducible separately.
At some point you’ll need the fact that a!b! divides (a+ b)!, which you should also prove.

3. Let F be a field and f(x) ∈ F [x] a monic polynomial of degree n. Let E be a spitting field
of f over F , so that f(x) = (x− α1) · · · (x− αn) over E.

(a) Prove that
∏

1≤i<j≤n(αi − αj)
2 ∈ F . This is called the discriminant ∆(f) of f .

Hint. Remember the Vandermonde and the elementary symmetric polynomials?

(b) Prove that ∆(f) = 0 if and only if f(x) has a repeated root in E.

(c) Prove that if ∆ is not a square in F then [E : F ] is even. Hint. The tower law.



4. Let F be a field and let f(x) = x3 + px+ q ∈ F [x]. Let E be the spitting field of f , so that
f(x) = (x− α1)(x− α2)(x− α3) over E, for elements α1, α2, α3 ∈ E.

(a) Prove that ∆(f) = −4p3 − 27q2. Hint. Use elementary symmetric polynomials.

(b) Let α ∈ E be one of the roots of f(x). Factor f(x) = (x − α)g(x) over F (α), where
g(x) ∈ F (α)[x] is quadratic. Prove that ∆(f) = g(α)2∆(g).

(c) Assume that the characteristic of F is not 2 and let α be a root of f(x). Prove that

E = F (α,
√

∆(f)). Deduce that if ∆(f) is a square in F then E has degree at most 3

over F , in particular, if f(x) is reducible over F , then E = F (
√

∆(f)).

(d) Write down a monic irreducible cubic polynomial over F3(t) whose discriminant is 0, and
factor it over its splitting field.
Hint. Think inseparable. You’ve already seen this.

(e) Now let F = F2(t) and let f(x) = x3 + tx+ t. Prove that f(x) is irreducible over F , has
nonzero square discriminant, yet its splitting field E has degree 6 over F .
Hint. As before, use the Eisenstein criterion and Gauss’s lemma for polynomials over
the ring F2[t].

Weird stuff can happen with cubic polynomials in characteristics 2 and 3!

5. Let F ⊂ R be a subfield and f(x) ∈ F [x] a cubic polynomial with discriminant ∆.

(a) You know that ∆ = 0 if and only if f(x) has a repeated root. Prove that in this case, all
the roots of f(x) are in F .

(b) Prove that ∆ > 0 if and only if all the roots of f(x) are real.

(c) Prove that ∆ < 0 if and only if f(x) a single real root and a pair of complex conjugate
roots.

Try to think of what these conditions mean for polynomials of higher odd degree (e.g., degree 5).


