Yale University Department of Mathematics

Math 370 Fields and Galois Theory

Spring 2019
Problem Set \# 6 (due in class on Thursday March 7)
Notation: The Galois group of a polynomial $f(x)$ over a field F is defined to be the F automorphism group of its splitting field E.

Let F be a field of characteristic $p>0$. Define the Frobenius map $\phi: F \rightarrow F$ by $\phi(x)=x^{p}$. By the "first-year's dream" the Frobenius map is a ring homomorphism. We call F perfect if the Frobenius map is surjective (equivalently, is a field automorphism), i.e., if every element of F has a p th root. By definition, we say that any field of characteristic 0 is perfect.

Problems:

1. Let $K=\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$. Determine the \mathbb{Q}-automorphism group of K / \mathbb{Q} by writing down all the elements as automorphisms and also by describing the isomorphism class of the group.
2. Compute the Galois group of the polynomial $f(x)=x^{3}-4 x+2 \in \mathbb{Q}[x]$.
3. Let F be a field of characteristic $\neq 2$. Let $f(x)=x^{4}+b x^{2}+c \in F[x]$. Assume that $f(x)$ is separable. Prove that the Galois group of $f(x)$ is isomorphic to a subgroup of the dihedral group D_{8} of order 8 .
4. Prove that if F is a perfect field, then any irreducible polynomial $f(x) \in F[x]$ is separable. (In class, this was stated in the case when F has characteristic 0; this is now one of the cases you'll need to prove, the other case being perfect fields of characteristic $p>0$.)
5. All about finite fields.
(a) Prove that a finite field K has characteristic p for some prime number p, and in this case, is a finite extension of \mathbb{F}_{p}. In particular, $|K|=p^{n}$ for some $n \geq 1$. Hint. Prime field.
(b) Prove that any finite field K is perfect and that $\phi \in \operatorname{Aut}_{\mathbb{F}_{p}}(K)$.
(c) Prove that if K is a finite field of order $q=p^{n}$, then K is the splitting field of the polynomial $x^{q}-x \in \mathbb{F}_{p}[x]$. Hint. Consider the multiplicative group K^{\times}.
(d) Prove that for any $q=p^{n}$, the polynomial $x^{q}-x \in \mathbb{F}_{p}[x]$ is separable and its splitting field K over \mathbb{F}_{p} is a field with q elements. Hint. Show that the set of elements of K fixed by ϕ^{n} (the Frobenius automorphism composed with itself n times) coincides with the roots of $x^{q}-x$. Why does this show that the set of roots of $x^{q}-x$ is itself a subfield of K, and hence actually all of K ?
(e) Prove that for any prime power $q=p^{n}$, there exists a unique isomorphism class of field of order q, i.e, there exists a field of order q and any two such fields are isomorphic. We call such a field \mathbb{F}_{q}.
(f) Prove that for $q=p^{n}$, the automorphism group Aut $_{\mathbb{F}_{p}}\left(\mathbb{F}_{q}\right)$ is cyclic of order n generated by the Frobenius ϕ.
(g) Even though you now know they are isomorphic, find an explicit isomorphism between the fields $\mathbb{F}_{2}[x] /\left(x^{3}+x^{2}+1\right)$ and $\mathbb{F}_{2}[x] /\left(x^{3}+x+1\right)$.
