YALE UNIVERSITY DEPARTMENT OF MATHEMATICS Math 370 Fields and Galois Theory Spring 2019

Problem Set # 7 (due in class on Thursday March 28; have a great Spring break!)

Notation: You are not allowed to use FT Theorem 3.10 or its corollaries. But you can use the fundamental theorem of Galois theory as stated in class.

Problems:

1. Let K/F be a Galois extension with Galois group isomorphic to $C_2 \times C_{12}$. How many subextensions of K/M/F are there satisfying:

- (a) [M:F] = 6
- (b) [M:F] = 9
- (c) G(K/M) isomorphic to C_6
- **2.** Let p be a prime number and S_p the symmetric group on p things.
 - (a) Prove that an element of S_p has order p if and only if it is a p-cycle.
 - (b) Prove that S_p is generated by any choice of a *p*-cycle and a transposition. Find a composite *n* and a choice of an *n*-cycle and a transposition that do not generate S_n .
 - (c) Let $F \subset \mathbb{R}$ be a subfield. Prove that if $f(x) \in F[x]$ is an irreducible polynomial of degree p having p-2 real roots, then the Galois group of f(x) over F is isomorphic to S_p .
 - (d) Let $F \subset \mathbb{R}$ be a subfield. Prove that if $f(x) \in F[x]$ is an irreducible cubic polynomial with $\Delta < 0$, then the Galois group of f(x) over F is isomorphic to S_3 .
 - (e) Prove that the Galois group of the polynomial $x^3 x 1$ over \mathbb{Q} is isomorphic to S_3 .
 - (f) Prove that the Galois group of the polynomial $x^5 x^4 x^2 x + 1$ over \mathbb{Q} is isomorphic to S_5 . **Hint.** You are allowed to use real analysis (e.g., the intermediate value theorem), but as a challenge, try to find a purely algebraic (possibly computer-aided) way.

3. Let p be an odd prime number. Prove that $\mathbb{Q}(\zeta_p)/\mathbb{Q}$ is a Galois extension and that there is an isomorphism of groups

$$(\mathbb{Z}/p\mathbb{Z})^{\times} \to \operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})$$

 $j \mapsto (\varphi_j : \zeta \mapsto \zeta^j)$

Deduce that the Galois group is cyclic of order p-1.

4. Let $\gamma = \sqrt{2 + \sqrt{2}} \in \mathbb{R}$.

- (a) Show that $\mathbb{Q}(\gamma)/\mathbb{Q}$ is Galois with cyclic Galois group.
- (b) Show that $\mathbb{Q}(\gamma, i) = \mathbb{Q}(\zeta_{16})$ and that this field is a Galois extension of \mathbb{Q} .
- **5.** The 12th roots of unity. Let $\zeta = \zeta_{12}$.
 - (a) Prove that $x^4 x^2 + 1$ is the minimal polynomial of ζ over \mathbb{Q} and that the other roots are $\zeta^5, \zeta^7, \zeta^{11}$.
 - (b) Prove that $\mathbb{Q}(\zeta)/\mathbb{Q}$ is a Galois extension and that there is an isomorphism of groups

$$(\mathbb{Z}/12\mathbb{Z})^{\times} \to \operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$$
$$j \mapsto (\varphi_j : \zeta \mapsto \zeta^j)$$

Deduce that the Galois group is isomorphic to a Klein four group.