YALE UNIVERSITY DEPARTMENT OF MATHEMATICS Math 370 Fields and Galois Theory Spring 2019

Problem Set # 9 (due in class on Thursday April 18)

Problems:

- **1.** Let K/F be a Galois extension with group S_3 .
 - (a) Prove that there exists an irreducible polynomial $f(x) \in F[x]$ of degree 6 whose splitting field is K.
 - (b) Assume that the characteristic of F is not 2. Prove that there exists an irreducible polynomial $f(x) \in F[x]$ of degree 3 whose splitting field is K. **Remark.** The cubic is more intuitive than the sextic, though slightly harder to prove.
- 2. More about prime cyclotomic extensions (your midterm preparation might help).
 - (a) In the cases p = 5 and p = 7, compute simple generators for each subfield, prove that each is normal over \mathbb{Q} , express each as the splitting field of an irreducible polynomial over \mathbb{Q} , and draw the lattices of subfields and subgroups of the Galois group.
 - (b) Find a Galois extension L/\mathbb{Q} whose Galois group is cyclic of order 5 and an irreducible polynomial of degree 5 over \mathbb{Q} whose splitting field is L. **Hint.** Feel free to use the computer for help on the last part.

3. Let L/\mathbb{Q} be a Galois extension whose Galois group is cyclic of order 4. Prove that its unique quadratic subextension K/\mathbb{Q} is real (i.e., $K = \mathbb{Q}(\sqrt{d})$ with d > 0). Hint. Complex conjugation.

4. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible quartic polynomial and $K = \mathbb{Q}(\alpha)$, where α is a root of f(x). Let $G \subset S_4$ be the Galois group of the splitting field of f(x) over \mathbb{Q} . Prove that K/\mathbb{Q} has no nontrivial intermediate subfields if and only if $G = A_4$ or $G = S_4$.

5. This problem will guide you through an example of a tower of extensions K/L/F, with K/F radical but L/F not radical. Let $K = \mathbb{Q}(\zeta_7)$ and $L = \mathbb{Q}(\zeta_7 + \overline{\zeta}_7)$.

- (a) Prove that K/\mathbb{Q} is radical.
- (b) Prove that L/\mathbb{Q} is not radical. Warning. A simple extension $F(\alpha)$ can be radical even if α is not an *n*th root of anything in F (try to think of an example).
- (c) Write down a polynomial of degree 3 over \mathbb{Q} that is solvable by radicals but whose splitting field is not a radical extension of \mathbb{Q} .