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Midterm Exam 2 Review Sheet

Directions: The second midterm exam will take place in class on Tuesday, April 9. You
will have the entire class period, 75 minutes, to complete the exam. No electronic devices
will be allowed. No notes will be allowed. On all problems, you will need to write your
thoughts/proofs in a coherent way to get full credit.

Topics covered and practice problems:

• Field automorphisms. The group AutFK for a field extension K/F . The bound
#AutFK ≤ [K : F ] for a finite extension K/F . Examples of towers K/E/F
where an F -automorphism of E does not lift to an F -automorphism of K, e.g.,
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• Galois extensions. A finite extension K/F is Galois iff #AutFK = [K : F ], in which
case we call Gal(K/F ) := AutFK the Galois group of K/F . Also, a finite extension
is Galois iff it is normal and separable iff it is the splitting field of a separable
polynomial. Galois correspondence: given a Galois extension K/F with group G,
there is an inclusion reversing bijection between the lattices{
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with the properties that [E : F ] = [G : H] and that E/F is Galois iff H C6 G, in
which case Gal(E/F ) ∼= G/H.

• Galois perspective on quadratic and cubic extensions. Discriminant.
If F has characteristic 6= 2 and K/F is quadratic, then K = F (

√
a) for some

a ∈ F and K/F is Galois with group C2 generated by
√
a 7→ −

√
a. Know examples

of quadratic Galois extensions over some characteristic 2 fields, e.g. F2 and F2(t).
If F has characteristic 6= 2 andK/F is a separable cubic extension withK = F (α),

where α has minimal polynomial f(x) ∈ F [x], then K/F is Galois with group C3

iff the discriminant ∆(f) is a square in F . If ∆(f) is not a square, then AutFK is
trivial and K/F is not normal (in particular, not Galois), in which case the normal

closure of K/F is K(
√

∆(f)) and it is Galois over F with group S3. Know examples
of cubic Galois extensions over some characteristic 2 fields, like F2 and F2(t).

• Normality. A finite extension K/F is normal iff it is the splitting field of a polyno-
mial. Transitivity properties (or failure thereof, with examples to keep in mind) of
normality in a tower K/E/F . Think of an inseparable normal extension. If a finite
extension K/F is not normal, then it has a normal closure N/K/F , of minimal
degree over K such that N/F is normal, and which is unique up to F -isomorphism.
For example, the normal closure of a simple extension F (α)/F is the splitting field
of the minimal polynomial of α.

• Separability of polynomials. A polynomial f(x) ∈ F [x] is separable iff it has simple
roots in its splitting field iff it has simple roots in any field where it splits completely



iff f(x) and f ′(x) are relatively prime. An irreducible polynomial f(x) ∈ F [x] is
separable iff f ′(x) is nonzero. If F has characteristic zero, then any irreducible
polynomial is separable. If F has characteristic p > 0, then any irreducible polyno-
mial f(x) ∈ F [x] has the form f(x) = g(xp

n
) where g(x) ∈ F [x] is irreducible and

separable and n ≥ 0; in this case, f(x) is inseparable iff n > 0.

• Field embeddings. The set of F -embeddings HomF (E,K) for extensions E/F and
K/F . Injectivity of embeddings. Surjectivity between finite extensions of the same
degree. The extension theorem: the set of F -embeddings of a simple extension
F (α) → K are in bijection with the set of roots of the minimal polynomial of α
over F that are contained in K. The automorphism group AutFK acts transitively
on the roots of any irreducible polynomial over F that splits completely over K. If
E/F is finite and N/F normal, then #HomF (E,N) ≤ [E : F ] with equality iff E/F
is separable.

• Composita. The compositum KL/F of two subextension K/F and L/F inside a
larger common extension M/F . Linear disjointness. Degree bounds: [KL : F ] ≤
[K/F ][L/F ] with equality if and only if K/F and L/F are linearly disjoint. Coun-
terexamples to linear disjointness.

• Finite fields Fq. Classification in terms of number of elements q = pn. Frobenius
automorphism as generator of the (cyclic) Galois groups of extensions of finite fields.
Construction as the splitting field of xq − x. Lattice of subfields of Fq.

• Cyclotomic fields. Roots of unity ζkn = e2πik/n and relationship with cos(2πk/m)
and sin(2πk/n). You should know small cyclotomic fields well (in terms of the lattice
of subfields and their generators): Q(ζn) for n ≤ 9. Galois group of Q(ζn)/Q (you
will be able to use the fact that Q(ζn)/Q has degree φ(n)).

Explicit examples to study:

• The lattice of subfields (and corresponding subgroups) of the Galois extension
Q(ω, 3

√
2)/Q with group S3, which is the splitting field of x3 − 2 over Q.

• The lattice of subfields (and corresponding subgroups) of the Galois extension
Q(ζ5)/Q with group C4. Expression of this field as a splitting field and identifi-
cation of generators of the subfields.

• The lattice of subfields (and corresponding subgroups) of the Galois extension
Q(ζ7)/Q with group C6. Expression of this field as a splitting field and identifi-
cation of generators of the subfields.

• The lattice of subfields (and corresponding subgroups) of the Galois extension
Q(i, 4

√
2)/Q with group D8, which is the splitting field of x4 − 2 over Q.

• The lattice of subfields (and corresponding subgroups) of the Galois extension of
finite fields F256/F2.

• For n ≤ 9, know how to compute minimal polynomials for ζn, cos(2π/n), 2 cos(2π/n),
sin(2π/n), and 2 sin(2π/n).

• The extension Fp(t)[x]/(xn − t) over Fp(t) for various values of n. (By the way, it’s
easy to see that xn − t is irreducible over Fp(t) using the Eisenstein criterion over
Fp[x], and you should know how this works.) You already know that for n = p, this
extension is inseparable. What about when n is relatively prime to p, or a relatively
prime multiple of p?


