YALE UNIVERSITY DEPARTMENT OF MATHEMATICS Math 373/573 Algebraic Number Theory Spring 2019

Problem Set # 1 (due in class on Thursday 31 January)

Notation: As usual, write $\omega = (1 + \sqrt{3}i)/2$ for our favorite choice of primitive 3rd root of unity. For a quadratic extension K/\mathbb{Q} , recall that the field norm $N : K \to \mathbb{Q}$ is the map $\alpha \mapsto \alpha \overline{\alpha}$, where $\overline{\alpha}$ is the result of applying the unique \mathbb{Q} -automorphism of K to α .

Problems:

- **1.** Quadratic fields. Let $d \in \mathbb{Z}$ be squarefree and $K = \mathbb{Q}(\sqrt{d})$.
 - (a) For $\alpha = a + b\sqrt{d} \in K$, determine the minimal polynomial of α over \mathbb{Q} .
 - (b) Prove that the ring of integers \mathcal{O}_K is either $\mathbb{Z}[\sqrt{d}]$ if $d \equiv 2, 3 \pmod{4}$ or $\mathbb{Z}[(1+\sqrt{d})/2)] = {(A+B\sqrt{d})/2 \mid A \equiv B \pmod{2}}$ if $d \equiv 1 \pmod{4}$.
 - (c) Let $\delta = \sqrt{d}$ if $d \equiv 2,3 \pmod{4}$ or $\delta = (1 + \sqrt{d})/2$ if $d \equiv 1 \pmod{4}$ and let D be the discriminant of the minimal polynomial of δ . Prove that D = 4d if $d \equiv 2,3 \pmod{4}$ and D = d if $d \equiv 1 \pmod{4}$. In fact, D is the **discriminant** of \mathcal{O}_K , as we'll learn later.
- **2.** Euclidean domains.
 - (a) Let R be an integral domain with fraction field K and $N : K \to \mathbb{N}$ be a multiplicative function (i.e., N(xy) = N(x)N(y) for all $x, y \in K$) satisfying N(0) = 0. Prove that R is a Euclidean domain with respect to (the restriction to R of) N if and only if for every $x \in K$ there exists $y \in R$ such that N(x y) < 1.
 - (b) Use this to prove the result of Gauss that $\mathbb{Z}[i]$ and $\mathbb{Z}[\omega]$ are Euclidean domains with respect to the field norm. Make a geometrical argument with a picture!
 - (c) Assume that d < 0 and let $K = \mathbb{Q}(\sqrt{d})$. Prove that \mathcal{O}_K is a Euclidean domain with respect to the field norm if and only if d = -11, -7, -3, -2, -1. Hint: Just as above, look at the picture of the lattice $\mathcal{O}_K \subset \mathbb{C}$; how close are the lattice points?

3. We say that two prime elements are **associates** if they differ up to multiplication by a unit. Find all prime elements in $\mathbb{Z}[\omega]$ up to associates. Hint: Show, using the field norm, that it suffices to factor the rational prime numbers in $\mathbb{Z}[\omega]$.

4. Units in quadratic fields. Let $d \in \mathbb{Z}$ be squarefree and $K = \mathbb{Q}(\sqrt{d})$. We say that K is **real** or **imaginary** if d > 0 or d < 0, respectively. Write $U_K = \mathcal{O}_K^{\times}$.

- (a) Let $\alpha \in \mathcal{O}_K$ and write $\alpha = x + y\sqrt{d}$ with $x, y \in \frac{1}{2}\mathbb{Z}$, noting that the $\frac{1}{2}$ is required only when $d \equiv 1 \pmod{4}$. Prove that $\alpha \in U_K$ if and only if $N(\alpha) = \pm 1$ if and only if $x^2 - dy^2 = \pm 1$.
- (b) Assume that K is imaginary. Prove that $U_K = \{\pm 1\}$ unless d = -1 or d = -3, in which case $U_K = \{\pm 1, \pm i\}$ or $U_K = \{\pm 1, \pm \omega, \pm \omega^2\}$, respectively. In particular, all units in imaginary quadratic fields are roots of unity.
- (c) Assume that K is real. Prove that if there exists $u \in U_K$ with $u \neq \pm 1$, then there exists $u \in U_K$ with u > 1. In this case, prove that U_K is infinite.
- (d) For d = 2, 3, 5 find $u \in U_K$ with u > 1.

YALE UNIVERSITY, DEPARTMENT OF MATHEMATICS, 10 HILLHOUSE AVE, NEW HAVEN, CT 06511 *E-mail address*: asher.auel@yale.edu