Yale University Department of Mathematics

Math 373/573 Algebraic Number Theory

Spring 2019

Problem Set \# 1 (due in class on Thursday 31 January)

Notation: As usual, write $\omega=(1+\sqrt{3} i) / 2$ for our favorite choice of primitive 3rd root of unity. For a quadratic extension K / \mathbb{Q}, recall that the field norm $N: K \rightarrow \mathbb{Q}$ is the map $\alpha \mapsto \alpha \bar{\alpha}$, where $\bar{\alpha}$ is the result of applying the unique \mathbb{Q}-automorphism of K to α.

Problems:

1. Quadratic fields. Let $d \in \mathbb{Z}$ be squarefree and $K=\mathbb{Q}(\sqrt{d})$.
(a) For $\alpha=a+b \sqrt{d} \in K$, determine the minimal polynomial of α over \mathbb{Q}.
(b) Prove that the ring of integers \mathcal{O}_{K} is either $\mathbb{Z}[\sqrt{d}]$ if $d \equiv 2,3(\bmod 4)$ or $\left.\mathbb{Z}[(1+\sqrt{d}) / 2)\right]=$ $\{(A+B \sqrt{d}) / 2 \mid A \equiv B(\bmod 2)\}$ if $d \equiv 1(\bmod 4)$.
(c) Let $\delta=\sqrt{d}$ if $d \equiv 2,3(\bmod 4)$ or $\delta=(1+\sqrt{d}) / 2$ if $d \equiv 1(\bmod 4)$ and let D be the discriminant of the minimal polynomial of δ. Prove that $D=4 d$ if $d \equiv 2,3(\bmod 4)$ and $D=d$ if $d \equiv 1(\bmod 4)$. In fact, D is the discriminant of \mathcal{O}_{K}, as we'll learn later.
2. Euclidean domains.
(a) Let R be an integral domain with fraction field K and $N: K \rightarrow \mathbb{N}$ be a multiplicative function (i.e., $N(x y)=N(x) N(y)$ for all $x, y \in K)$ satisfying $N(0)=0$. Prove that R is a Euclidean domain with respect to (the restriction to R of) N if and only if for every $x \in K$ there exists $y \in R$ such that $N(x-y)<1$.
(b) Use this to prove the result of Gauss that $\mathbb{Z}[i]$ and $\mathbb{Z}[\omega]$ are Euclidean domains with respect to the field norm. Make a geometrical argument with a picture!
(c) Assume that $d<0$ and let $K=\mathbb{Q}(\sqrt{d})$. Prove that \mathcal{O}_{K} is a Euclidean domain with respect to the field norm if and only if $d=-11,-7,-3,-2,-1$. Hint: Just as above, look at the picture of the lattice $\mathcal{O}_{K} \subset \mathbb{C}$; how close are the lattice points?
3. We say that two prime elements are associates if they differ up to multiplication by a unit. Find all prime elements in $\mathbb{Z}[\omega]$ up to associates. Hint: Show, using the field norm, that it suffices to factor the rational prime numbers in $\mathbb{Z}[\omega]$.
4. Units in quadratic fields. Let $d \in \mathbb{Z}$ be squarefree and $K=\mathbb{Q}(\sqrt{d})$. We say that K is real or imaginary if $d>0$ or $d<0$, respectively. Write $U_{K}=\mathcal{O}_{K}^{\times}$.
(a) Let $\alpha \in \mathcal{O}_{K}$ and write $\alpha=x+y \sqrt{d}$ with $x, y \in \frac{1}{2} \mathbb{Z}$, noting that the $\frac{1}{2}$ is required only when $d \equiv 1(\bmod 4)$. Prove that $\alpha \in U_{K}$ if and only if $N(\alpha)= \pm 1$ if and only if $x^{2}-d y^{2}= \pm 1$.
(b) Assume that K is imaginary. Prove that $U_{K}=\{ \pm 1\}$ unless $d=-1$ or $d=-3$, in which case $U_{K}=\{ \pm 1, \pm i\}$ or $U_{K}=\left\{ \pm 1, \pm \omega, \pm \omega^{2}\right\}$, respectively. In particular, all units in imaginary quadratic fields are roots of unity.
(c) Assume that K is real. Prove that if there exists $u \in U_{K}$ with $u \neq \pm 1$, then there exists $u \in U_{K}$ with $u>1$. In this case, prove that U_{K} is infinite.
(d) For $d=2,3,5$ find $u \in U_{K}$ with $u>1$.

Yale University, Department of Mathematics, 10 Hillhouse Ave, New Haven, CT 06511
E-mail address: asher.auel@yale.edu

