YALE UNIVERSITY DEPARTMENT OF MATHEMATICS Math 373/573 Algebraic Number Theory Spring 2019

Problem Set # 2 (due in class on Thursday 14 February \heartsuit)

Problems:

- **1.** Trigonometry.
 - (a) Prove that $2\sin(\pi/n)$ is an algebraic integer for all $n \ge 1$.
 - (b) Prove that $\sin(\pi/n)$ is not an algebraic integer for all $n \ge 3$.
- **2.** Inseparable. Prove that if L/K is a finite inseparable field extension then disc(L/K) = 0.

3. Discriminants. Let B be an integral domain and assume that B is a free \mathbb{Z} -module of rank n with disc $(B/\mathbb{Z}) \neq 0$. Let $N \subset B$ be the \mathbb{Z} -submodule generated by elements $\beta_1, \ldots, \beta_n \in B$.

- (a) Prove that $D(\beta_1, \ldots, \beta_n) \neq 0$ if and only if N has finite index (as abelian groups) in B, and in this case, prove that $D(\beta_1, \ldots, \beta_n) = [B:N]^2 \operatorname{disc}(B/\mathbb{Z})$. (Recall that $\operatorname{disc}(B/\mathbb{Z})$ can be considered as a well-defined element of \mathbb{Z} .)
- (b) Prove that if $D(\beta_1, \ldots, \beta_n)$ is squarefree (as an integer), then β_1, \ldots, β_b is a \mathbb{Z} -basis of B. (Most often, this is applied when $\beta_i = \beta^i$ for some fixed $\beta \in B$ to deduce that $B = \mathbb{Z}[\beta]$.)
- 4. The real root. Let β be the unique positive real root of $x^3 4x 1$ and let $K = \mathbb{Q}(\beta)$.
 - (a) Prove that $\mathcal{O}_K = \mathbb{Z}[\beta]$.
 - (b) Compute $\operatorname{Tr}_{K/\mathbb{Q}}(\beta^i)$ for i = 0, 1, 2, 3.
 - (c) Let a_0, a_1, \ldots be a sequence of integers satisfying the recursion

$$a_{n+3} - 4a_{n+1} - a_n = 0$$

for all $n \ge 0$. Prove that there are real numbers b, b', b'' such that

$$a_n = b\beta^n + b'(\beta')^n + b''(\beta'')^n$$

where β', β'' are the Galois conjugates of β .

(For inspiration, you might look up my Math 225 exercise about Fibonacci numbers, or just ask someone who took the class with me.)

(d) Determine if the limit

$$\lim_{n \to \infty} |a_n|^{1/n}$$

exists, and if so, determine it.

5. No power. Let $K = \mathbb{Q}(\sqrt{7}, \sqrt{10})$. Prove that there is no $\alpha \in \mathcal{O}_K$ such that $\mathcal{O}_K = \mathbb{Z}[\alpha]$. Follow the strategy in ANT Problem 2-6 on p. 44.

YALE UNIVERSITY, DEPARTMENT OF MATHEMATICS, 10 HILLHOUSE AVE, NEW HAVEN, CT 06511 *E-mail address*: asher.auel@yale.edu