YALE UNIVERSITY DEPARTMENT OF MATHEMATICS Math 608 Introduction to Arithmetic Geometry Fall 2018

Problem Set # 1 (due in class on Monday October 15)

Reading: Gill-Szamuely §1.1–1.3, §2.1–2.2, §2.4.

Problems:

1. Let G be a group. A **basis of open neighborhoods of the identity** in G is a collection \mathcal{U} of subgroups with the property that for each $U_1, U_2 \in \mathcal{U}$ there exists $U_3 \in \mathcal{U}$ such that $U_3 \subset U_1 \cap U_2$.

- (a) Let \mathcal{U} be a basis of open neighborhoods of the identity in G satisfying that for every $U \in \mathcal{U}$ and for every $g \in G$ there exists $V \in \mathcal{U}$ such that $gVg^{-1} \subset U$. Prove that the collection of all translates by elements of G of all subsets in \mathcal{U} is a base \mathcal{B} for a topological group structure on G.
- (b) Prove that there is no basis of open neighborhoods of the identity that generates the usual Euclidean topology on ℝ or on ℝ[×]. Describe the topology on ℝ and on ℝ[×] generated by the basis of open neighborhoods of the identity consisting of all subgroups.
- (c) Find a nice basis of open neighborhoods of the identity generating the profinite topology on $\mathbb{Z}_p = \lim \mathbb{Z}/p^n \mathbb{Z}$.

2. Recall that a group G is called **residually finite** if the profinite topology (whose basis of open neighborhoods of the identity are all finite index subgroups) on G is Hausdorff; it is called **profinite** if it is an inverse limit of finite groups.

- (a) Prove that G is residually finite if and only if $\bigcap U = \{e\}$, where the intersection is taken over all finite index normal subgroups U of G.
- (b) Prove that G is residually finite if and only if the canonical homomorphism $G \to \widehat{G}$ to the profinite completion is injective.
- (c) Let K/F be any Galois extension of fields. Prove that the Galois group G = Gal(K/F) is a profinite group.
- (d) Prove that any free group is residually finite.

3. Let G be a locally compact (i.e., every point has a compact neighborhood) Hausdorff topological group. For example, \mathbb{R} or any discrete group is locally compact. Let $U \subset \mathbb{C}^{\times}$ be the unit circle, which is a locally compact topological group. Define the **Pontryagin dual** \check{G} to be the group of all continuous homomorphisms $\phi : G \to U$ equipped with the compact-open topology.

(a) Prove that $\check{\mathbb{Z}} \cong U$ and that $\check{U} \cong \mathbb{Z}$.

- (b) Prove that $\check{\mathbb{R}} \cong \mathbb{R}$ via a map (in the other direction) $x \mapsto (y \mapsto e^{2ixy})$.
- (c) Prove that if G is a finite abelian group, then $\check{G} \cong G$.
- (d) Prove that if G is a discrete torsion group, then \check{G} is a profinite group.
- (e) Prove that $\widetilde{\mathbb{Q}/\mathbb{Z}} \cong \widehat{\mathbb{Z}}$. **Hint.** \mathbb{Q}/\mathbb{Z} is a "direct limit"!

4. Let *A* be an (associative unital) *F*-algebra. We say that an *F*-linear map $\overline{}: A \to A$ is an **involution** if $\overline{1} = 1$, $\overline{\overline{a}} = a$ for all $a \in A$, and $\overline{ab} = \overline{ba}$ for all $a, b \in A$. An involution is called **standard** if $a\overline{a} \in F$ for all $a \in A$. As usual, we consider $F \subset A$ as the *F*-subspace spanned by the identity in *A*.

- (a) Prove that if $\overline{}$ is a standard involution on an *F*-algebra *A* then $a + \overline{a} \in F$ for all $a \in A$. Hint. Consider $(1 + a)(\overline{1 + a})$.
- (b) If $\overline{}$ is a standard involution on an *F*-algebra *A*, define the **reduced trace** trd : $A \to F$ by $a \mapsto a + \overline{a}$ and the **reduced norm** nrd : $A \to F$ by $a \mapsto a\overline{a}$. Prove that any $a \in A$ satisfies $a^2 \operatorname{trd}(a)a + \operatorname{nrd}(a) = 0$. This is an analogue of the Cayley–Hamilton theorem and one often calls $x^2 \operatorname{trd} = (a)x + \operatorname{nrd}(a) \in F[x]$ the reduced characteristic polynomial of $a \in A$.
- (c) Prove that if K is an F-algebra of dimension 2, then K is commutative and admits a unique standard involution. What is this in the case that K/F is a separable extension of degree 2? What about $K = F \times F$? What about the "dual numbers" $K = F[x]/(x^2)$?
- (d) Prove that if A is a quaternion algebra over F, then A has a unique standard involution. **Hint.** Restrict to a quadratic extension contained in A.
- 5. About division algebras.
 - (a) Over an algebraically closed field F, the only finite dimensional division F-algebra if F itself. **Hint.** Use the existence of eigenvalues of linear operators on finite dimensional vector spaces over algebraically closed fields.
 - (b) Let $A = \mathbb{C}(t)$ the rational function field over the complex numbers. Then A is an infinite dimensional division \mathbb{C} -algebra. Where does your previous argument break down for A?
 - (c) Prove that if A is a (nonsplit) quaternion algebra over a field F (of characteristic not 2) and K/F is a quadratic extension with $K \subset A$ a sub F-algebra, then $A \otimes_F K$ is split.
 - (d) Read the proof of *Gille–Szamuely* Lemma 2.4.4, really Theorem 2.2.1. This was not as easy as I made it appear in class!