YALE UNIVERSITY DEPARTMENT OF MATHEMATICS Math 608 Introduction to Arithmetic Geometry Spring 2016

Final Exam (due 5:30 pm Wednesday May 11th)

Guidelines. You may use any external sources, but work by yourself.

Notations. Recall that projective space \mathbb{P}^n parameterizes lines through the origin in an (n+1)-dimensional vector space. For any field k, we can view $\mathbb{P}^n(k)$ as the set of tuples $(a_0, \ldots, a_n) \in k^{n+1}$ modulo the diagonal scalar action of k^{\times} . If K/k is a Galois extension with group G, then G acts on $\mathbb{P}^n(K)$ via its natural action on K^{n+1} .

1. Let k be a field of characteristic 2 and $a \in k$ and $b \in k^{\times}$. Define the generalized quaternion algebra [a, b) by the presentation

$$[a,b) = \langle i, j | i^2 + i = a, j^2 = b, ij = ji + j \rangle.$$

Then [a, b) is an associative k-algebra of dimension 4. Prove that the following are equivalent:

- (a) $[a,b) \cong M_2(k)$
- (b) [a, b) is not a division algebra.
- (c) The element b is a norm from the Artin–Schreier extension $k(\alpha)/k$, where α is a root of the equation $x^2 + x = a$.
- (d) The projective conic defined by $ax^2 + by^2 = z^2 + zx$ in \mathbb{P}^2 has a k-rational point.

2. Let K/k be a finite Galois extension with group G and let $B(K) \subset GL_2(K)$ be the subgroup of upper triangular matrices.

- (a) Identify the quotient $\operatorname{GL}_2(K)/B(K)$ as a G-set with the set $\mathbb{P}^1(K)$.
- (b) Show that $H^1(G, B(K))$ is trivial. **Hint.** Use the "long" exact sequence in nonabelian Galois cohomology.
- (c) Show that $H^1(G, K^+)$ is trivial, here K^+ is the additive group of K. **Hint.** Show that $a \mapsto \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$ is a G-equivariant representation $K^+ \to B(K)$.

3. Let G be a finite cyclic group of order n and fix a generator σ . Let A be a G-module (i.e., abelian group with G-action). Consider the maps $N : A \to A$ and $\sigma - 1 : A \to A$ defined by

$$N(x) = \sum_{i=0}^{n-1} \sigma^{i}(x)$$
 and $(\sigma - 1)(x) = \sigma(x) - x.$

(a) Verify that the $\mathbb{Z}[G]$ -module \mathbb{Z} has a free resolution

$$\cdots \xrightarrow{N} \mathbb{Z}[G] \xrightarrow{\sigma-1} \mathbb{Z}[G] \xrightarrow{N} \mathbb{Z}[G] \xrightarrow{\sigma-1} \mathbb{Z}[G] \xrightarrow{\epsilon} \mathbb{Z} \to 0$$

where $\epsilon : \mathbb{Z}[G] \to \mathbb{Z}$ is the usual **augmentation** map or **counit** sending every group element to 1.

(b) Show that this resolution gives the following periodicity on the level of cohomology

$$H^{0}(G, A) = A^{G} \quad \text{and} \quad H^{i}(G, A) = \begin{cases} {}_{N}A/(\sigma - 1)A & \text{if } i \text{ is odd} \\ {}_{A}G/NA & \text{if } i \text{ is even} \end{cases}$$
for $i > 0$, where ${}_{N}A = \ker(N : A \to A)$.

- (c) Give formulas for $H^1(G, A)$ when G acts trivially on A.
- (d) If K/k is a finite cyclic Galois extension with group G, show that $H^1(G, K^{\times}) = 1$ gives the original form of Hilbert's Theorem 90: that $x \in K^{\times}$ satisfies $N_{K/k}(x) = 1$ if and only if $x = \sigma(y)/y$ for some $y \in K^{\times}$.
- **4.** Let k be a field of characteristic 0 such that $\operatorname{Gal}(\overline{k}/k) \cong \mathbb{Z}/p\mathbb{Z}$ for a prime number p.
 - (a) Prove that $\operatorname{Br}(k) \cong k^{\times}/N_{\overline{k}/k}(\overline{k}^{\times})$. **Hint.** Use the cohomology of cyclic groups in degree 2.
 - (b) Also, prove that $\operatorname{Br}(k) \cong \operatorname{Br}(k)/p\operatorname{Br}(k) \cong k^{\times}/k^{\times p}$. **Hint.** Use the Kummer sequence $1 \to \mu_p \to \overline{k}^{\times} \to \overline{k}^{\times} \to 1$ and its associated long exact sequence in Galois cohomology going up to degree 3, Hilbert's Theorem 90, and the cohomology of cyclic groups.
 - (c) Conclude that $N_{\overline{k}/k}(\overline{k}^{\times}) = k^{\times p}$ hence the only possibility is p = 2 and $\overline{k} = k(\sqrt{-1})$. **Hint.** Show that k contains a primitive pth root of unity (if not try adjoining it), hence that the cyclic extension \overline{k}/k is a Kummer extension, i.e., $\overline{k} = k(\alpha)$ where $\alpha^p = y$ for some $y \in k^{\times} \setminus k^{\times p}$.
 - (d) Show that declaring the squares to be positive will equip k with an ordered field structure.
 - (e) (Artin–Schreier) Prove that if k is a field of characteristic 0 whose absolute Galois group is a nontrivial finite group, then $\overline{k} = k(\sqrt{-1})$ and k is an ordered field where the squares are positive.

Hint. Take a *p*-Sylow subgroup of the Galois group and use the fact that *p*-groups are solvable, then iteratively apply the previous results.

Remark. In fact, Artin and Schreier proved that in positive characteristic, the absolute Galois group is either trivial or infinite.