Dartmouth College Department of Mathematics

Math 71 Algebra

Fall 2021
Problem Set \# 2 (due via Canvas upload by 5 pm, Wednesday, October 13)
Notation: Z_{n} is an abstract cyclic group written multiplicatively.
Reading: DF 1.4, 1.6, 2.1, 2.3.

Problems:

1. DF 1.6 Exercises $2^{*}, 3,4^{*}, 6^{*}, 7,9^{*}$ (here D_{24} is the dihedral group with 24 elements), 14^{*}, $16,17^{*}$ (prove that it's always a bijection), $18,24^{*}, 25$.
2. DF 2.1 Exercises $2,6^{*}, 7,8,9^{*}, 10,12,14$.
3. DF 2.3 Exercises 2, 5, $8^{*}, 10,11,20,21^{*}, 22^{*}, 23^{*}$ (Hint: What does 22 tell you about the order of 5 in $\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)^{\times}$?), $25,26^{*}$.
4. Fields of order 4.
(a) Let $F=\{0,1, x, y\}$. Prove that there are operations + and \cdot on F, such that $1+x=y$ and $x^{2}=y$, making F into a field. (Note that the four elements of F are distinct!) Essentially the problem is to fill out the addition and multiplication tables:

+	0	1	x	y
0				
1				
x				
y				

\cdot	0	1	x	y
0				
1				
x				
y				

You already know certain rows and columns by properties of 0 and 1 in a field!
(b) Let F_{1} and F_{2} be fields. A map $\phi: F_{1} \rightarrow F_{2}$ is an isomorphism of fields if ϕ is a bijection satisfying $\phi(x+y)=\phi(x)+\phi(y)$ and $\phi(x y)=\phi(x) \phi(y)$ and $\phi\left(1_{F_{1}}\right)=1_{F_{2}}$. An isomorphism between a field and itself is called an automorphism. Find a non-identity automorphism of the field F of order 4 described above.
(c) Let F^{\prime} be any field with 4 elements. Prove that there exists an isomorphism $\phi: F \rightarrow F^{\prime}$, where F is the field described above.
This shows that there is a unique "isomorphism class" of field of order 4 , which we call \mathbb{F}_{4}.

