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Problem Set # 4 (due via Canvas upload by 5 pm, Wednesday, November 3rd)

Reading: DF 4.5, 5.1–5.2.

Problems: (No textbook problems are required, but they are good practice/interesting/fun.)

0. DF 4.5 Exercises 4–8, 18, 22, 26, 30, 39, 40.
DF 5.1 Exercises 4, 14, 15–18.
DF 5.2 Exercises 2, 3, 5, 6, 7, 8, 9, 11, 14. The notions of exponent and rank are defined

just above the exercise section; the book uses the term free rank for what we called the rank
of an abelian group.

1. Solvable up to sixty! Recall that A5, which has order 60, is simple. The goal is to:

(ℵ) Prove that all groups of order < 60 are solvable.

As explain in class, this has two steps. First, use Jordan–Hölder to:

(α) Prove that if 60 is the first order of a finite nonabelian simple group, then all groups of
order < 60 are solvable.

Second, prove that every group of order < 60 is not simple. For this, as the abelian simple
groups are precisely those of prime order, for each composite order n < 60, we will try to prove
that no group of order n is simple. For example, we already know that no group of order pα,
with α > 1, is simple and that no group of order pq, with p and q primes, is simple. Prove the
following additional criteria on the order of a group for the group to not be simple:

(a) If G is a finite group of order pkm, with p - m and m < p (more generally, no divisor of
m other than 1 is congruent to 1 modulo p), then G has a normal Sylow p-subgroup.

(b) If G is a finite group of order pqr, where p, q, and r are primes with p < q < r, then G
has a normal Sylow subgroup for at least one of p, q, or r.

(c) If G is a finite group of order 2k · 3, with k ≥ 1, then G is not simple.

(d) If G is a finite group of order 2k · 5, with k ≥ 1, then G is not simple.

(e) If G is a finite group of order 22 · 3k, with k ≥ 1, then G is not simple. For k = 1, use
part (c).

(f) If G is a finite group of order 3k · 5, with k ≥ 1, then G is not simple.

(g) No group of order 56 is simple.

Hints. Part (a) follows from a direct application of the congruence conditions in the Sylow
theorems. For (b), assume the contrary and consider the possible number of Sylow r-subgroups,
then use this to count the number of elements of order r (any two Sylow r-subgroups intersect
only at the identity), combine this with the number of elements of order p and q to find more
elements than the order of the group. For (c) and (d), handle k small using the Sylow congru-
ence conditions and then for k large, consider the permutation representation associated to the
conjugation action of G on the set of Sylow 2-subgroups. For (e) and (f), do the same using the
Sylow 3-subgroups. For (g), if neither the Sylow 2- nor 7-subgroups are normal, start counting
elements in these subgroups to reach a contradiction (while any two Sylow 7-subgroups only
intersect at the identity, how could Sylow 2-subgroups intersect?).

Finally, use all the criteria you know to handle every composite order < 60. Have fun!



2. Some isomorphisms.

(a) For any field F , prove that the center of GL2(F ) consists of F× multiples of the identity
matrix. What is the center of SL2(F )? We denote by PGL2(F ) = GL2(F )/Z(GL2(F ))
and PSL2(F ) = SL2(F )/Z(SL2(F )).

(b) Prove that GL2(F ) acts on the set P of lines in F 2 through the origin and that the kernel
of this action is the center of GL2(F ). Here, “line through the origin” is a colloquial
term for “1-dimensional subspace.” Conclude that PGL2(F ) acts faithfully on the set P ,
hence the permutation representation is an injective homomorphism PGL2(F )→ SP to
the symmetric group on the elements of P .

(c) Calculate |PGL2(Fp)|.

(d) Prove that PGL2(F3) ∼= S4. (Hint: How many lines through the origin are there in F2
3?)

(e) Under the isomorphism PGL2(F3) ∼= S4 from the previous part, find all elements of
PGL2(F3) corresponding to 3-cycles.

(f) For an odd prime p, prove that the map PSL2(Fp)→ PGL2(Fp), taking the coset repre-
sented by a matrix M to the coset represented by M , is a well defined injective homo-
morphism whose image has index 2. Notice that for p = 3 this is particularly clear!

(g) Prove that the determinant yields a well-defined homomorphism det : PGL2(F3) → F×
3 .

Show that PSL2(F3) = ker(det).

(h) Show that PSL2(F3) is isomorphic to the subgroup of S4 generated by the 3-cycles.

(i) Prove that A4 6 S4 is generated by 3-cycles and conclude that PSL2(F3) ∼= A4.
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