Dartmouth College Department of Mathematics

Math 71 Algebra

Fall 2021
Problem Set \# 4 (due via Canvas upload by 5 pm, Wednesday, November 3rd)
Reading: DF 4.5, 5.1-5.2.
Problems: (No textbook problems are required, but they are good practice/interesting/fun.)
0. DF 4.5 Exercises 4-8, 18, 22, 26, 30, 39, 40.

DF 5.1 Exercises 4, 14, 15-18.
DF 5.2 Exercises $2,3,5,6,7,8,9,11,14$. The notions of exponent and rank are defined just above the exercise section; the book uses the term free rank for what we called the rank of an abelian group.

1. Solvable up to sixty! Recall that A_{5}, which has order 60 , is simple. The goal is to:
(א) Prove that all groups of order <60 are solvable.
As explain in class, this has two steps. First, use Jordan-Hölder to:
(α) Prove that if 60 is the first order of a finite nonabelian simple group, then all groups of order <60 are solvable.
Second, prove that every group of order <60 is not simple. For this, as the abelian simple groups are precisely those of prime order, for each composite order $n<60$, we will try to prove that no group of order n is simple. For example, we already know that no group of order p^{α}, with $\alpha>1$, is simple and that no group of order $p q$, with p and q primes, is simple. Prove the following additional criteria on the order of a group for the group to not be simple:
(a) If G is a finite group of order $p^{k} m$, with $p \nmid m$ and $m<p$ (more generally, no divisor of m other than 1 is congruent to 1 modulo p), then G has a normal Sylow p-subgroup.
(b) If G is a finite group of order $p q r$, where p, q, and r are primes with $p<q<r$, then G has a normal Sylow subgroup for at least one of p, q, or r.
(c) If G is a finite group of order $2^{k} \cdot 3$, with $k \geq 1$, then G is not simple.
(d) If G is a finite group of order $2^{k} \cdot 5$, with $k \geq 1$, then G is not simple.
(e) If G is a finite group of order $2^{2} \cdot 3^{k}$, with $k \geq 1$, then G is not simple. For $k=1$, use part (c).
(f) If G is a finite group of order $3^{k} \cdot 5$, with $k \geq 1$, then G is not simple.
(g) No group of order 56 is simple.

Hints. Part (a) follows from a direct application of the congruence conditions in the Sylow theorems. For (b), assume the contrary and consider the possible number of Sylow r-subgroups, then use this to count the number of elements of order r (any two Sylow r-subgroups intersect only at the identity), combine this with the number of elements of order p and q to find more elements than the order of the group. For (c) and (d), handle k small using the Sylow congruence conditions and then for k large, consider the permutation representation associated to the conjugation action of G on the set of Sylow 2-subgroups. For (e) and (f), do the same using the Sylow 3-subgroups. For (g), if neither the Sylow 2- nor 7 -subgroups are normal, start counting elements in these subgroups to reach a contradiction (while any two Sylow 7 -subgroups only intersect at the identity, how could Sylow 2-subgroups intersect?).

Finally, use all the criteria you know to handle every composite order <60. Have fun!
2. Some isomorphisms.
(a) For any field F, prove that the center of $\mathrm{GL}_{2}(F)$ consists of F^{\times}multiples of the identity matrix. What is the center of $\mathrm{SL}_{2}(F)$? We denote by $\mathrm{PGL}_{2}(F)=\mathrm{GL}_{2}(F) / Z\left(\mathrm{GL}_{2}(F)\right)$ and $\operatorname{PSL}_{2}(F)=\mathrm{SL}_{2}(F) / Z\left(\mathrm{SL}_{2}(F)\right)$.
(b) Prove that $\mathrm{GL}_{2}(F)$ acts on the set P of lines in F^{2} through the origin and that the kernel of this action is the center of $\mathrm{GL}_{2}(F)$. Here, "line through the origin" is a colloquial term for "1-dimensional subspace." Conclude that $\mathrm{PGL}_{2}(F)$ acts faithfully on the set P, hence the permutation representation is an injective homomorphism $\mathrm{PGL}_{2}(F) \rightarrow S_{P}$ to the symmetric group on the elements of P.
(c) Calculate $\left|\mathrm{PGL}_{2}\left(\mathbb{F}_{p}\right)\right|$.
(d) Prove that $\mathrm{PGL}_{2}\left(\mathbb{F}_{3}\right) \cong S_{4}$. (Hint: How many lines through the origin are there in \mathbb{F}_{3}^{2} ?)
(e) Under the isomorphism $\mathrm{PGL}_{2}\left(\mathbb{F}_{3}\right) \cong S_{4}$ from the previous part, find all elements of $\mathrm{PGL}_{2}\left(\mathbb{F}_{3}\right)$ corresponding to 3 -cycles.
(f) For an odd prime p, prove that the map $\mathrm{PSL}_{2}\left(\mathbb{F}_{p}\right) \rightarrow \mathrm{PGL}_{2}\left(\mathbb{F}_{p}\right)$, taking the coset represented by a matrix M to the coset represented by M, is a well defined injective homomorphism whose image has index 2 . Notice that for $p=3$ this is particularly clear!
(g) Prove that the determinant yields a well-defined homomorphism det: $\mathrm{PGL}_{2}\left(\mathbb{F}_{3}\right) \rightarrow \mathbb{F}_{3}^{\times}$. Show that $\mathrm{PSL}_{2}\left(\mathbb{F}_{3}\right)=\operatorname{ker}(\operatorname{det})$.
(h) Show that $\mathrm{PSL}_{2}\left(\mathbb{F}_{3}\right)$ is isomorphic to the subgroup of S_{4} generated by the 3-cycles.
(i) Prove that $A_{4} \leqslant S_{4}$ is generated by 3 -cycles and conclude that $\mathrm{PSL}_{2}\left(\mathbb{F}_{3}\right) \cong A_{4}$.

