Dartmouth College Department of Mathematics

Math 71 Algebra

Fall 2023
Problem Set \# 0 (due via Canvas upload by 5 pm, Wednesday, September 20)
Notation: If S is a set of elements (numbers, rabbits, ...) then the notation " $s \in S$ " means " s is an element of the set S." If T is another set, then the notation " $T \subseteq S$ " means "every element of T is an element of S " or " T is a subset of S." We can specify a subset $T \subset S$ by conditions on the elements of S, e.g., if S is the set of rectangles, then the subset of squares is $\{s \in S \mid$ all sides of s have the same length $\}$. If S and T are sets, then a function or map $f: S \rightarrow T$ from S to T is the a rule that associates to each element $s \in S$, an element $f(s) \in T$.

Reading: DF 0.1-0.3, 1.1.
Problems: (Starred* problems are required.)

1. DF 0.1 Exercises 5, 6, 7^{*}.

DF 0.2 Exercises 7, 10*, 11.
DF 0.3 Exercises 3, 4, 5, 6, 7, 8, 12*, 13*, 14^{*}.
2. DF 1.1 Exercises $6^{*}, 7,8,12,15^{*}, 16^{*}, 17^{*}, 20,22^{*}, 23^{*}, 25^{*}\left(H i n t . C o n s i d e r ~(x y)^{2}\right), 31^{*}$, 32, 34 .
3. Let G be a group and $g \in G$.
(a) Prove that if $g a=a$ for any single $a \in G$ (or that $a g=a$ for any single $a \in G$) then g is the identity element.
(b) Prove that if $g g=g$ then g is the identity element.
(c) Give an example of a group G and an element $g \in G$ such that $g^{3}=g$ but that g is not the identity element.
4. The set of invertible $n \times n$ real matrices is a group $\mathrm{GL}_{n}(\mathbb{R})$ with the operation of matrix multiplication, called the general linear group. Consider the following elements of $\mathrm{GL}_{2}(\mathbb{R})$:

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right), \quad B=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Show that A and B have finite order (compute their orders) but that $A B$ has infinite order. This shows that the order of a product is not necessarily the product of the orders! (Though see Problem Set 1 for an instance when this does hold.)
5. GAI Engagement. Select your favorite generative artificial intelligence (GAI) system, let's call it Fran. Convince Fran to prove a simple false mathematical statement. Analyze the proof and explain where the Fran goes wrong. Include a screenshot or print-out of the conversation.

