Dartmouth College Department of Mathematics

Math 71 Algebra

Fall 2023
Problem Set \# 1 (due via Canvas upload by 5 pm, Wednesday, September 27)
Notation: Given positive integers a_{1}, \ldots, a_{n} we define their least common multiple $\operatorname{lcm}\left(a_{1}, \ldots, a_{n}\right)$ to be least positive integer that is divisible by each of a_{1}, \ldots, a_{n}. The following characterization of the lcm is useful:

If $N \geq 1$ is a multiple of a_{i} for all $i=1, \ldots, n$ then $\operatorname{lcm}\left(a_{1}, \ldots, a_{n}\right)$ divides N.
By the way, to show that two positive integers n and m are equal, it suffices to show that n divides m and that m divides n.

Reading: DF 0.2-0.3, 1.1-1.5.
Problems: (Only DF *ed problems non-DF problems will be graded, but you should solve them all.)

1. Read DF 0.2 (5)-(7) about the Euclidean Algorithm and the last paragraph in DF 0.3 about how to compute inverses modulo n using the Euclidean Algorithm. Then complete the following practice exercises: DF 0.2 Exercises 1ab, DF 0.3 Exercises 15ab.
2. Let G be a group and $a_{1}, a_{2}, \ldots, a_{r} \in G$. We say that a_{1}, \ldots, a_{r} pairwise commute if a_{i} commutes with a_{j} for all i and j. We say that a_{1}, \ldots, a_{r} are rank independent if $a_{1}^{e_{1}} \cdots a_{r}^{e_{r}}=1$ implies that e_{i} is a multiple of $\left|a_{i}\right|$ for all i. The aim of the problem is to prove:

Proposition. Let G be a group and $a_{1}, a_{2}, \ldots, a_{r} \in G$ be pairwise commuting rank independent elements of finite order. Then $\left|a_{1} \cdots a_{r}\right|=\operatorname{lcm}\left(\left|a_{1}\right|, \ldots,\left|a_{r}\right|\right)$.
(a) (DF 1.1 Exercise 24) If a and b are commuting elements, prove that $(a b)^{n}=a^{n} b^{n}$ for all $n \in \mathbb{Z}$. Hint: Do induction on n.
(b) If a_{1}, \ldots, a_{r} are pairwise commuting elements, prove that $\left(a_{1} \cdots a_{r}\right)^{n}=a_{1}^{n} \cdots a_{r}^{n}$. Hint: Do induction on r.
(c) If a_{1}, \ldots, a_{r} are pairwise commuting elements of finite order (not necessarily rank independent), prove that $\left|a_{1} \cdots a_{r}\right|$ divides $\operatorname{lcm}\left(\left|a_{1}\right|, \ldots,\left|a_{r}\right|\right)$. Hint: Raise $a_{1} \cdots a_{r}$ to the power $\operatorname{lcm}\left(\left|a_{1}\right|, \ldots,\left|a_{r}\right|\right)$.
(d) Prove the proposition. Hint: Do induction on r; for the base case $r=1$ there is not much to say, and then you should realize that (after a bit of juggling with least common multipliers) the induction step just boils down to the case $r=2$. Hint (for a different proof): Use the above characterization of the lcm to prove that $\operatorname{lcm}\left(\left|a_{1}\right|, \ldots,\left|a_{n}\right|\right)$ divides $\left|a_{1} \cdots a_{n}\right|$. In any method you choose, be sure to highlight where the rank independence condition is used!
(e) Show that disjoint cycles in S_{n} are rank independent, then deduce DF 1.3 Exercise 15.
3. DF 1.2 Exercises $2,3^{*}, 7^{*}$. Look at 9-13.

DF 1.3 Exercises 1 (also compute the order of each permutation), 10* ("least positive residue $\bmod m$ " means a number between 1 and m, not between 0 and $m-1$ as we are used to taking residues), $11^{*}, 13^{*}, 16$.

DF 1.4 Exercises 4*, 8, 11abde*.
DF 1.5 Exercises 1, 2.
DF 1.6 Exercises $1,2^{*}, 3,4^{*}, 6^{*}, 7,9^{*}$ (here D_{24} is the dihedral group with 24 elements).
4. Let $d \in \mathbb{Z}$ be a nonsquare. Prove that $\mathbb{Q}(\sqrt{d})=\{a+b \sqrt{d} \in \mathbb{C} \mid a, b \in \mathbb{Q}\}$ is a field under addition and multiplication of complex numbers. Hint. You can take it for granted that \sqrt{d} is irrational.
5. GAI Engagement. Convince Fran to prove a false mathematical statement in algebra, then explain to Fran what the issue is, and then ask Fran to correct the statement. Include a screenshot or print-out of the conversation.

