Dartmouth College Department of Mathematics

Math 71 Algebra

Fall 2023
Problem Set \# 2 (due via Canvas upload by 5 pm, Wednesday, October 11)
Notation: $Z_{n}=\left\langle x \mid x^{n}=e\right\rangle$ is an abstract cyclic group written multiplicatively.
Given groups A and B, their direct product is the Cartesian product set $A \times B$, i.e., the set of ordered pairs (a, b) with $a \in A$ and $b \in B$, together with the operation $(a, b) \cdot\left(a^{\prime}, b^{\prime}\right)=\left(a a^{\prime}, b b^{\prime}\right)$. Then $A \times B$ is a group with identity $\left(e_{A}, e_{B}\right)$ and inverses $(a, b)^{-1}=\left(a^{-1}, b^{-1}\right)$.

Reading: DF 1.4, 1.6, 2.1, 2.3, 3.1.

Problems:

1. Klein four. Define the Klein four group to the group with presentation

$$
V_{4}=\left\langle a, b \mid a^{2}=b^{2}=e, a b=b a\right\rangle
$$

(a) Prove that V_{4} has 4 elements, and that each nonidentity element has order 2.
(b) Prove that V_{4} is isomorphic to $(\mathbb{Z} / 8 \mathbb{Z})^{\times}$, as well as isomorphic to $Z_{2} \times Z_{2}$.
(c) Find every subgroup of S_{4} isomorphic to V_{4}, and determine which are normal subgroups.
2. DF 1.6 Exercises $16^{*}, 17$ (prove that it's always a bijection), 18, 20*, 21, 24, 25.
3. DF 1.7 Exercises 12^{*} (what is $D_{2 n}$ modulo the kernel of this action?), 20* (write down this subgroup of S_{4}, see DF 1.2 Exercise 9).
4. DF 2.1 Exercises 2, 6, 7, 8, 9* (determine the order of $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$), 10, 12, 14 .

5. DF 2.2 Exercises 4, $6^{*} 7$.

6. DF 2.3 Exercises 5, 8^{*}, 10, 11, 20, 21*, 22, 23*, 26^{*}.
7. Fields of order 4.
(a) Let $F=\{0,1, x, y\}$. Prove that there are operations + and \cdot on F, such that $1+x=y$ and $x^{2}=y$, making F into a field. (Note that the four elements of F are distinct!) Essentially the problem is to fill out the addition and multiplication tables:

+	0	1	x	y
0				
1				
x				
y				

\cdot	0	1	x	y
0				
1				
x				
y				

You already know certain rows and columns by properties of 0 and 1 in a field!
(b) Let F_{1} and F_{2} be fields. A map $\phi: F_{1} \rightarrow F_{2}$ is an isomorphism of fields if ϕ is a bijection satisfying $\phi(x+y)=\phi(x)+\phi(y)$ and $\phi(x y)=\phi(x) \phi(y)$ and $\phi\left(1_{F_{1}}\right)=1_{F_{2}}$. An isomorphism between a field and itself is called an automorphism. Find a non-identity automorphism of the field F of order 4 described above.
(c) Let F^{\prime} be any field with 4 elements. Prove that there exists an isomorphism $\phi: F \rightarrow F^{\prime}$, where F is the field described above.
This shows that there is a unique "isomorphism class" of field of order 4 , which we call \mathbb{F}_{4}.

