Dartmouth College Department of Mathematics

Math 71 Algebra

Fall 2023
Problem Set \# 3 (due via Canvas upload by 5 pm, Wednesday, October 18)
Reading: DF 2.2-2.5, 3.1-3.3.

Problems:

1. DF 2.4 Exercises $6,7,8,9^{*}$ (You already know how to compute the order of $\mathrm{SL}_{2}\left(\mathbb{F}_{3}\right)$, so do it!), 11* (Hint: What are the orders of elements in S_{4} ?), 12*, 13, $14^{*}, 15,19$.
2. DF 2.5 Exercises $4,10,12^{*}, 14^{*}, 15$.
3. DF 3.1 Exercises 5-12, 14, 17*, 22, 34, 36*, 40, 41*, 42 .
4. DF 3.2 Exercises $4^{*}, 5,8^{*}, 13^{*}$ (prove that no nonidentity element in this D_{8} commutes with any nonidentity element of $\langle(123)\rangle), 16,22^{*}$ (Euler's theorem!).
5. Show that for all $n, m \geq 1$, the group S_{n+m} contains a subgroup isomorphic to $S_{n} \times S_{m}$. Conclude that $n!m$! divides $(n+m)$!.
6. Tricks with Euler's theorem. You can only use pencil and paper!
(a) Prove that every element of $(\mathbb{Z} / 72 \mathbb{Z})^{\times}$has order dividing 12. (Hint: This is better than what a straight application of Euler's theorem will give you! Try applying Euler's theorem to a pair of relatively prime divisors of 72.)
(b) Find the last two digits of the huge number $3^{3^{3^{\circ}}}$ where there are 2023 threes appearing! (Hint: Do nested applications of Euler's theorem.)
