DARTMOUTH COLLEGE DEPARTMENT OF MATHEMATICS

Math 71 Algebra

Fall 2023

Problem Set # 3 (due via Canvas upload by 5 pm, Wednesday, October 18)

Reading: DF 2.2–2.5, 3.1–3.3.

Problems:

- 1. DF 2.4 Exercises 6, 7, 8, 9* (You already know how to compute the order of $SL_2(\mathbb{F}_3)$, so do it!), 11* (Hint: What are the orders of elements in S_4 ?), 12*, 13, 14*, 15, 19.
- **2.** DF 2.5 Exercises 4, 10, 12*, 14*, 15.
- **3.** DF 3.1 Exercises 5–12, 14, 17*, 22, 34, 36*, 40, 41*, 42.
- **4.** DF 3.2 Exercises 4^* , 5, 8^* , 13^* (prove that no nonidentity element in this D_8 commutes with any nonidentity element of $\langle (123) \rangle$), 16, 22* (Euler's theorem!).
- **5.** Show that for all $n, m \ge 1$, the group S_{n+m} contains a subgroup isomorphic to $S_n \times S_m$. Conclude that n!m! divides (n+m)!.
- **6.** Tricks with Euler's theorem. You can only use pencil and paper!
 - (a) Prove that every element of $(\mathbb{Z}/72\mathbb{Z})^{\times}$ has order dividing 12. (Hint: This is better than what a straight application of Euler's theorem will give you! Try applying Euler's theorem to a pair of relatively prime divisors of 72.)
 - (b) Find the last two digits of the huge number 3^{3^3} where there are 2023 threes appearing! (Hint: Do nested applications of Euler's theorem.)