

DARTMOUTH COLLEGE DEPARTMENT OF MATHEMATICS
Math 71 Algebra
Fall 2025

Problem Set # 0 (due via Canvas upload by 5 pm, Wednesday, September 24)

Notation: If S is a set of elements (numbers, rabbits, ...) then the notation “ $s \in S$ ” means “ s is an element of the set S .” If T is another set, then the notation “ $T \subseteq S$ ” means “every element of T is an element of S ” or “ T is a **subset** of S .” We can specify a subset $T \subset S$ by conditions on the elements of S , e.g., if S is the set of rectangles, then the subset of squares is $\{s \in S \mid \text{all sides of } s \text{ have the same length}\}$. If S and T are sets, then a **function** or **map** $f : S \rightarrow T$ from S to T is the a rule that associates to each element $s \in S$, an element $f(s) \in T$.

Reading: DF 0.1–0.3, 1.1.

Problems: (Starred* problems are required.)

1. DF 0.1 Exercises 5, 6, 7*.

DF 0.2 Exercises 7, 10*, 11.

DF 0.3 Exercises 3, 4, 5, 6, 7, 8, 12*, 13*, 14*.

2. DF 1.1 Exercises 6*, 7, 8, 12, 15*, 16*, 17*, 20, 22*, 23*, 25* (Hint. Consider $(xy)^2$), 31*, 32, 34.

3. Let G be a group and $g \in G$.

- Prove that if $ga = a$ for any single $a \in G$ (or that $ag = a$ for any single $a \in G$) then g is the identity element.
- Prove that if $gg = g$ then g is the identity element.
- Give an example of a group G and an element $g \in G$ such that $g^3 = g$ but that g is not the identity element.

4. The set of invertible $n \times n$ real matrices is a group $\text{GL}_n(\mathbb{R})$ with the operation of matrix multiplication, called the real **general linear group**. Consider the following elements of $\text{GL}_2(\mathbb{R})$:

$$A = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Show that A and B have finite order (compute their orders) but that AB has infinite order. This shows that the order of a product is not necessarily the product of the orders! (Though see Problem Set 1 for an instance when this does hold.)