

Problem Set # 5 (due via Canvas upload by 5 pm, Monday, November 10th)

Notations: Let F be a field. An **F -algebra** A is an F -vector space that is also a ring, with compatibility between multiplication and scalar multiplication $(ax)(by) = (ab)(xy)$ for $a, b \in F$ and $x, y \in A$. An F -algebra A is **unital** if A has 1. For example, the ring $M_n(F)$ of $n \times n$ matrices with coefficients in F is a unital F -algebra. An **F -algebra homomorphism** $\varphi : A \rightarrow B$ is a ring homomorphism that is also an F -linear map, and a unital F -algebra homomorphism $\varphi : A \rightarrow B$ is required to satisfy $\varphi(1_A) = 1_B$. An **F -subalgebra** of A is an F -subspace that is an algebra under the multiplication in A . To check that a subspace is a subalgebra, it suffices to show that it is closed under multiplication.

Reading: DF 7.1–7.3.

Problems:

1. DF 5.2 Exercises 2, 3, 5, 6, 7, 8, 9, 11, 14. The notions of **exponent** and **rank** are defined just above the exercise section; the book uses the term **free rank** for what we called the rank of an abelian group.

2. DF 7.1 Exercises 3–8, 13, 14* (Hint. $(1+x)(1-x) = 1-x^2$ will help you if $x^2 = 0$, what do you do if $x^n = 0$?), 15, 21* (using Venn diagrams in your proofs is ok!), 20, 21 (cf. 15), 25*, 30* (cf. notations in 28 and 29).

3. DF 7.2 Exercises 2, 3*, 6, 7*, 12* (Hint. Compute $e_g N$ for all $g \in G$, where e_g are the generators of the group ring $R[G]$), 13.

4. DF 7.3 Exercises 1, 2, 6, 8–10, 13–15, 17*, 20, 21* (in particular, if F is a field, find all two-sided ideals of $M_n(F)$), 24, 26* (part (c) is affectionately called the “first years’ dream”), 28, 29*, 31, 33.

5. Quadratic units. See DF pp. 229–230. Write $\mathcal{O}_D = \mathcal{O}_{\mathbb{Q}(\sqrt{D})}$.

(a) Prove that if $D < 0$, then the group \mathcal{O}_D^\times is finite and find all possibilities for this group.

Hint. Think about the geometry of the subset $\mathcal{O}_D \subset \mathbb{C}$ and the condition that a unit must have norm one.

(b) By contrast, it is true (but we will not prove it in this class) that if $D > 0$ then \mathcal{O}_D^\times is infinite. Show that \mathcal{O}_D^\times is infinite for $D = 3, 5, 6, 7$. **Hint.** With respect to the embedding $\mathcal{O}_D \subset \mathbb{R}$, find a unit u with $u > 0$.

6. Quaternions. Let F be a field and \mathbb{H}_F be the ring of F -quaternions, whose elements are

$$a + bx + cy + dz, \quad a, b, c, d \in F$$

and where addition and multiplication is defined to be the associative and distributive operations with the relations $x^2 = y^2 = z^2 = -1$ and $xy = z = -yx$, $zx = y = -xz$, $yz = x = -zy$. Note that these are the same relations as in the usual (real) quaternions, though the reason why we aren’t using i , j , and k will be quickly apparent. As before, \mathbb{H}_F is a unital F -algebra (see the notations section above).

(a) Define the 2×2 complex **Pauli matrices**

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

These play a role in quantum mechanics. Prove that the \mathbb{R} -subspace A of $M_2(\mathbb{C})$ spanned by $I, i\sigma_x, i\sigma_y, i\sigma_z$ is a unital \mathbb{R} -algebra isomorphic to $\mathbb{H}_{\mathbb{R}}$. **Hint.** Realize that $M_2(\mathbb{C})$ is an \mathbb{R} -algebra under matrix multiplication, and show that A is an \mathbb{R} -subalgebra, so that you only need to check that A is closed under matrix multiplication.

(b) Prove that $\mathbb{H}_{\mathbb{C}}$ is isomorphic, as unital \mathbb{C} -algebras, to $M_2(\mathbb{C})$.

(c) For every odd prime p , prove that $\mathbb{H}_{\mathbb{F}_p}$ is isomorphic, as unital \mathbb{F}_p -algebras, to $M_2(\mathbb{F}_p)$.
Hint. The idea is to find replacements for the Pauli matrices. First, if -1 is a square in \mathbb{F}_p^\times , then you can literally use the Pauli matrices, replacing i by a square root of -1 . Prove that for p odd, -1 is a square in \mathbb{F}_p^\times if and only if $p \equiv 1 \pmod{4}$. To do this, recall the (as of yet unproved) fact that \mathbb{F}_p^\times is a cyclic group of order $p-1$, which is even since p is odd. Then the squares will form a subgroup of index 2 in \mathbb{F}_p^\times and in fact any element of order 4 in \mathbb{F}_p^\times will be a square root of -1 . But \mathbb{F}_p^\times has an element of order 4 if and only if $p-1$ is divisible by 4. So what about the case $p \equiv 3 \pmod{4}$? Here, you need to come up with different matrices whose square is $-I$, which by linear algebra, must have trace 0 and determinant 1. The following fact will be useful: when p is odd, there are $(p+1)/2$ squares in \mathbb{F}_p (this following immediately from the preceding discussion, together with the fact that 0 is a square).

(d) Prove that $\mathbb{H}_{\mathbb{F}_2}$ is isomorphic to the group ring $\mathbb{F}_2[G]$, where G is a Klein-four group.