

Problem Set # 6 (due via Canvas upload by 5 pm, Monday, November 17)

Remark: This problem set is *extra credit* and can be used to recover up to 5% of your grade. There are some challenging problems below, so have fun!

Problems:

1. Final DF exercises!

DF 7.4 Exercises 8, 13, 33 (see Example 4 on page 255), 34.

DF 7.6 Exercises 1*, 3*, 4, 5, 7.

DF 8.1 Exercises 11a, 12*.

DF 8.2 Exercises 2, 3, 5*.

DF 9.1 Exercises 4, 5*, 6, 7, 13.

2. Call a positive integer n *special* if there exists an integer m with $1 < m < n$ so that

$$1 + 2 + \cdots + (m-1) = (m+1) + \cdots + n.$$

For example, $n = 8$ is special with $m = 6$, while $n = 7$ is not special. Find all positive integers that are special. **Hint.** Relate the pairs (n, m) to integer solutions of $a^2 - 2b^2 = 1$, i.e. units in $\mathbb{Z}[\sqrt{2}]$ of norm 1. You can use the book's description of the set of units in $\mathbb{Z}[\sqrt{2}]$.

3. Prove the following presentations.

$$(a) A_4 = \langle x, y \mid x^2 = y^3 = (xy)^3 = 1 \rangle$$

$$(b) S_4 = \langle x, y \mid x^2 = y^3 = (xy)^4 = 1 \rangle$$

$$(c) A_5 = \langle x, y \mid x^2 = y^3 = (xy)^5 = 1 \rangle$$

4. For a field F , denote by $\mathrm{PGL}_2(F)$ and $\mathrm{PSL}_2(F)$ the quotients of $\mathrm{GL}_2(F)$ and $\mathrm{SL}_2(F)$ by their respective normal subgroups consisting of nonzero scalar multiples of the identity.

(a) Prove that for any field F , the kernel of the action of $\mathrm{GL}_2(F)$ on the lines through the origin in the vector space F^2 consists of the subgroup of nonzero scalar matrices. Deduce that the induced action of $\mathrm{PGL}_2(F)$ on the set of lines is faithful.

(b) Prove that for a finite field \mathbb{F}_q with q elements, the number of lines through the origin in the vector space \mathbb{F}_q^2 is $q+1$.

(c) Recall, from Problem Set # 2, the construction of the field \mathbb{F}_4 of order 4. Prove that $\mathrm{PGL}_2(\mathbb{F}_4) \cong \mathrm{PSL}_2(\mathbb{F}_4) \cong \mathrm{SL}_2(\mathbb{F}_4) \cong A_5$. **Hint.** Consider the action on the set of lines through the origin in the vector space \mathbb{F}_4^2 .

(d) Prove that $\mathrm{PGL}_2(\mathbb{F}_5) \cong S_5$ and that $\mathrm{PSL}_2(\mathbb{F}_5) \cong A_5$. **Hint.** The action on the set of lines through the origin in the vector space \mathbb{F}_5^2 gives an injective homomorphism $\mathrm{PGL}_2(\mathbb{F}_5) \rightarrow S_6$. Count the number of $(2, 2, 2)$ -cycles in S_6 that are not in the image of this homomorphism, then let $\mathrm{PGL}_2(\mathbb{F}_5)$ act on them by conjugation to determine a new permutation homomorphism.

5. Some linear algebra over the field of order 9.

(a) Prove that $\mathbb{F}_3[i] = \{0, \pm 1, \pm i, \pm 1 \pm i\}$, where $i^2 = -1$ and all other arithmetic is done modulo 3, is a field of order 9, which we call \mathbb{F}_9 .

(b) Prove that $\mathrm{PGL}_2(\mathbb{F}_9)$ is *not* isomorphic to S_6 , even though they have the same order. **Hint.** Use linear algebra to bound the size of some of the conjugacy classes in $\mathrm{PGL}_2(\mathbb{F}_9)$ and compare with what we know about S_6 .

(c) Prove, on the other hand, that $\mathrm{PSL}_2(\mathbb{F}_9) \cong A_6$. **Hint.** Find a subgroup of $\mathrm{PSL}_2(\mathbb{F}_9)$ isomorphic to A_5 , and then act on the 6 cosets to get a permutation representation.