Dartmouth College Department of Mathematics

Math 75 Cryptography

Spring 2020
Problem Set \# 6 (upload to Canvas by Friday, May 15, 11:30 am EDT)

Problems:

1. Alice publishes her RSA public key: modulus $n=2038667$ and exponent $e=103$.
(a) Bob wants to send Alice the message $m=892383$. What ciphertext does Bob send to Alice?
(b) Alice knows that her modulus factors into a product of two primes, one of which is $p=1301$. Find a decryption exponent d for Alice.
(c) Alice receives the ciphertext $c=317730$ from Bob. Decrypt the message.
2. Alice uses the RSA public key modulus $n=p q=172205490419$. Through espionage, Eve discovers that $(p-1)(q-1)=172204660344$. Determine p, q.
3. Bob uses RSA to receive a single ciphertext b corresponding to the message a. Suppose that Eve can trick Bob into decrypting a single chosen ciphertext c which is not equal to b, and showing her the resulting plaintext. Show how Eve can recover a.
4. Suppose that Alice and Bob have the same RSA modulus n and suppose that their encryption exponents e and f are relatively prime. Charles wants to send the message a to Alice and Bob, so he encrypts to get $b=a^{e}(\bmod n)$ and $c=a^{f}(\bmod n)$. Show how Eve can find a if she intercepts b and c.
5. A Carmichael number is an integer $n>1$ that is not prime with the property that for all $a \in \mathbb{Z}, a^{n} \equiv a(\bmod n)$. Prove that $561,1105,1729$ are Carmichael numbers. [Hint: Look at the proof of $a^{e d} \equiv a(\bmod n), n=p q$, in RSA. You may factor these numbers!]
