Dartmouth College Department of Mathematics

Math 75 Cryptography

Spring 2022
Problem Set \# 5 (upload to Canvas by Friday, May 6, 10:10 am EDT)

Problems:

1. Let $k \geq 2$ and $A=(\mathbb{Z} / 2 \mathbb{Z})^{k}$. Let $\overrightarrow{0}, \overrightarrow{1} \in A$ be the vectors of all zeros and all ones, respectively. Define the map $g: A \rightarrow A$ by

$$
g(y)= \begin{cases}\overrightarrow{0} & y \neq \overrightarrow{0} \\ \overrightarrow{1} & y=\overrightarrow{0}\end{cases}
$$

Then define

$$
\begin{aligned}
s, G: A \times A & \rightarrow A \times A \\
s(x, y) & =(y, x) \\
G(x, y) & =(x+g(y), y)
\end{aligned}
$$

(a) Prove that s^{2} and G^{2} are the identity on $A \times A$. [We actually proved this in lecture, so just make sure you understand it here.]
(b) Prove that $(s G)^{4}=$ sgsgsgsg moves only 3 elements of $A \times A$, i.e.

$$
\#\left\{(x, y) \in A \times A:(s G)^{4}(x, y) \neq(x, y)\right\}=3 .
$$

(c) Prove that $(s G)^{12}$ is the identity.
2. Encrypt the message 001100001010 using two rounds of SDES and (9 bit) key 111000101, as explained in lecture. Show all your steps! [Hint: After one round, the output is 001010010011.$]$
3. In the Rijndael field $F=\mathbb{F}_{2}[X] /\left(X^{8}+X^{4}+X^{3}+X+1\right)$, where bytes are associated to polynomials modulo $X^{8}+X^{4}+X^{3}+X+1$, compute the product $01010010 \cdot 10010010 \in F$.
4. Here you will prove something that was claimed in lecture!
(a) Find all monic irreducible polynomials of degree ≤ 4 in $\mathbb{F}_{2}[X]$.
(b) Verify that the Rijndael polynomial

$$
f(X)=X^{8}+X^{4}+X^{3}+X+1
$$

is irreducible in $\mathbb{F}_{2}[X]$. [Hint: Any factor must have degree at most 4.]
5. Put $f(X)=X^{8}+X^{4}+X^{3}+X+1 \in \mathbb{F}_{2}[X]$, and let

$$
a=00001100=X^{3}+X^{2} \in F=\mathbb{F}_{2}[X] /(f) .
$$

(a) Compute a^{5}.
(b) Find the inverse $b^{-1} \in F$ of $b=X^{2}=00000100$.
(c) Compute the product $b^{-1} a$ and verify that $b^{-1} a=X+1$ in F.

