Dartmouth College Department of Mathematics

Math 75 Cryptography
Spring 2022
Problem Set \# 7 (upload to Canvas by Tuesday, May 24, 12:00 pm EDT)

Problems:

1. For the following integers either provide a witness for the compositeness of n or conclude that n is probably prime by providing 5 numbers that are not witnesses. Recall that a witness for the compositeness of n is an integer $a \in \mathbb{Z}$ such that, if we write $n-1=2^{k} u$, where u is odd, then a satisfies $a \not \equiv 0(\bmod n)$ and $a^{u} \not \equiv 1(\bmod n)$ and $a^{2^{i} u} \not \equiv-1(\bmod n)$ for all $i=0, \ldots, k-1$.
(a) $n=1009$.
(b) $n=2009$.
2. Using big- O notation, estimate the number of bit operations required to perform the witness test on $n \in \mathbb{Z}_{>0}$ enough times so that, if n passes all of the tests, it has less than a 10^{-m} chance of being composite.
3. Factor 53477 using the Pollard rho algorithm.
4. Fermat and sieving.
(a) Find three nontrivial factors of $n=999999999999999999999999999999999919$ by hand.
(b) Let $n=2^{29}-1$. Given that

$$
\begin{array}{lr}
258883717^{2} \equiv-2 \cdot 3 \cdot 5 \cdot 29^{2} & (\bmod n) \\
301036180^{2} \equiv-3 \cdot 5 \cdot 11 \cdot 79 \quad(\bmod n) \\
126641959^{2} \equiv 2 \cdot 3^{2} \cdot 11 \cdot 79 \quad(\bmod n)
\end{array}
$$

discover a factor of n.
5. Discrete logarithms.
(a) Let $p=101$. Compute $\log _{2} 11$ (using complete enumeration by hand).
(b) Let $p=27781703927$ and $g=5$. Suppose Alice and Bob engage in a Diffie-Hellman key exhange; Alice chooses the secret key $a=1002883876$ and Bob chooses $b=$ 21790753397. Describe the key exchange: what do Alice and Bob exchange, and what is their common (secret) key? [You may want to use a computer!]
(c) Let $p=1021$. Compute $\log _{10} 228$ using the baby step-giant step algorithm. Show the output of, and explain all steps in, your computation.
(d) Let $p=1801$. Compute $\log _{11} 249$ using the Pohlig-Hellman algorithm. Show the output of, and explain all steps in, your computation. You'll want to remind yourself of how to solve systems of congruence equations using Sunzi's theorem: To find $x \in \mathbb{Z}$ satisfying $x \equiv a_{i}\left(\bmod n_{i}\right)$ for $i=1, \ldots, k$, first define integers $N_{i}=\prod_{j \neq i} n_{i}$ and $M_{i} \equiv N_{i}^{-1}\left(\bmod n_{i}\right)$ for all $i=1, \ldots, k$, and then $x=\sum_{i=1}^{k} a_{i} N_{i} M_{i}$ works.

