DARTMOUTH COLLEGE DEPARTMENT OF MATHEMATICS Math 75 Cryptography Spring 2022

Problem Set # 7 (upload to Canvas by Tuesday, May 24, 12:00 pm EDT)

Problems:

1. For the following integers either provide a witness for the compositeness of n or conclude that n is probably prime by providing 5 numbers that are not witnesses. Recall that a witness for the compositeness of n is an integer $a \in \mathbb{Z}$ such that, if we write $n - 1 = 2^k u$, where u is odd, then a satisfies $a \not\equiv 0 \pmod{n}$ and $a^u \not\equiv 1 \pmod{n}$ and $a^{2^i u} \not\equiv -1 \pmod{n}$ for all $i = 0, \ldots, k - 1$.

- (a) n = 1009.
- (b) n = 2009.

2. Using big-*O* notation, estimate the number of bit operations required to perform the witness test on $n \in \mathbb{Z}_{>0}$ enough times so that, if *n* passes all of the tests, it has less than a 10^{-m} chance of being composite.

- 3. Factor 53477 using the Pollard rho algorithm.
- 4. Fermat and sieving.

 - (b) Let $n = 2^{29} 1$. Given that

 $258883717^{2} \equiv -2 \cdot 3 \cdot 5 \cdot 29^{2} \pmod{n}$ $301036180^{2} \equiv -3 \cdot 5 \cdot 11 \cdot 79 \pmod{n}$ $126641959^{2} \equiv 2 \cdot 3^{2} \cdot 11 \cdot 79 \pmod{n}$

discover a factor of n.

5. Discrete logarithms.

- (a) Let p = 101. Compute $\log_2 11$ (using complete enumeration by hand).
- (b) Let p = 27781703927 and g = 5. Suppose Alice and Bob engage in a Diffie-Hellman key exhange; Alice chooses the secret key a = 1002883876 and Bob chooses b = 21790753397. Describe the key exchange: what do Alice and Bob exchange, and what is their common (secret) key? *[You may want to use a computer!]*
- (c) Let p = 1021. Compute $\log_{10} 228$ using the baby step-giant step algorithm. Show the output of, and explain all steps in, your computation.
- (d) Let p = 1801. Compute $\log_{11} 249$ using the Pohlig-Hellman algorithm. Show the output of, and explain all steps in, your computation. You'll want to remind yourself of how to solve systems of congruence equations using Sunzi's theorem: To find $x \in \mathbb{Z}$ satisfying $x \equiv a_i \pmod{n_i}$ for $i = 1, \ldots, k$, first define integers $N_i = \prod_{j \neq i} n_i$ and $M_i \equiv N_i^{-1} \pmod{n_i}$ for all $i = 1, \ldots, k$, and then $x = \sum_{i=1}^k a_i N_i M_i$ works.