DARTMOUTH COLLEGE DEPARTMENT OF MATHEMATICS Math 81/111 Abstract Algebra Winter 2020

Problem Set # 6 (due in class on Friday 28 February)

Notation: The Galois group of a polynomial f(x) over a field F is defined to be the F-automorphism group of its splitting field E.

Problems:

1. Let $f(x) \in \mathbb{R}[x]$ be a cubic polynomial with discriminant Δ .

- (a) You know that $\Delta = 0$ if and only if f(x) has a repeated root in its splitting field. Prove that in this case, all the roots of f(x) are real.
- (b) Prove that $\Delta > 0$ if and only if the roots of f(x) are distinct and are all real.
- (c) Prove that $\Delta < 0$ if and only if f(x) has a single real root and a pair of complex conjugate (nonreal) roots.

For a polynomial $f(x) \in \mathbb{R}[x]$ of degree $n \geq 1$ with discriminant $\Delta \neq 0$, state and prove a formula for the sign of Δ in terms of the number of pairs of complex conjugate (nonreal) roots.

- **2.** Let $\gamma = \sqrt{2 + \sqrt{2}} \in \mathbb{R}$.
 - (a) Show that $\mathbb{Q}(\gamma)/\mathbb{Q}$ is Galois with cyclic Galois group.
 - (b) Show that $\mathbb{Q}(\gamma, i) = \mathbb{Q}(\zeta_{16})$ and calculate the Galois group $\operatorname{Gal}(\mathbb{Q}(\gamma, i)/\mathbb{Q})$.

3. Let K/F be a Galois extension with Galois group isomorphic to $C_2 \times C_{12}$. How many subextensions of K/M/F are there satisfying:

- (a) [K:M] = 6
- (b) [M:F] = 6
- (c) $\operatorname{Gal}(K/M)$ isomorphic to C_6
- (d) $\operatorname{Gal}(M/F)$ isomorphic to C_6

4. Let p be a prime number and S_p the symmetric group on p things.

- (a) Prove that an element of S_p has order p if and only if it is a p-cycle.
- (b) Prove that S_p is generated by any choice of a *p*-cycle and a transposition. Find a composite *n* and a choice of an *n*-cycle and a transposition that do not generate S_n .
- (c) Let $F \subset \mathbb{R}$ be a subfield. Prove that if $f(x) \in F[x]$ is an irreducible polynomial of degree p having p-2 real roots, then the Galois group of f(x) over F is isomorphic to S_p .
- (d) Let $F \subset \mathbb{R}$ be a subfield. Prove that if $f(x) \in F[x]$ is an irreducible cubic polynomial with $\Delta < 0$, then the Galois group of f(x) over F is isomorphic to S_3 .
- (e) Prove that the Galois group of the polynomial $x^3 x 1$ over \mathbb{Q} is isomorphic to S_3 .
- (f) Prove that the Galois group of the polynomial $x^5 x^4 x^2 x + 1$ over \mathbb{Q} is isomorphic to S_5 . **Hint.** You are allowed to use real analysis (e.g., the intermediate value theorem), but as a challenge, try to find a purely algebraic (possibly computer-aided) way.

DARTMOUTH COLLEGE, DEPARTMENT OF MATHEMATICS, 6188 KEMENY HALL, HANOVER, N.H. 03755 *E-mail address*: asher.auel@dartmouth.edu