Dartmouth College Department of Mathematics

Math 81/111 Abstract Algebra

Winter 2024
Problem Set \# 2 (due by Canvas upload by the end of Friday 19 January)
Notation: Let F be a field. If K and K^{\prime} are field extensions of F, an F-homomorphism $\varphi: K \rightarrow K^{\prime}$ is a ring homomorphism such that $\varphi(c)=c$ for all $c \in F$, i.e., φ is an F algebra homomorphism (cf. see FT p. 13). An F-isomorphism of field extensions is a bijective F-homomorphism.

We say that a field extension K / F is algebraic if every element $\alpha \in K$ is algebraic over F. We will see that any field extension generated by algebraic elements is itself algebraic.

Reading: DT 13.1-13.4, FT pp. 11-23

Problems:

1. Subgroups of fields. Let F be a field.
(a) Let G be a finite abelian group. Prove that G is cyclic if and only if G has at most m elements of order dividing m for each $m \mid \# G$. Hint. You'll need the structure theorem of finite abelian groups.
(b) Prove that every finite subgroup G of the multiplicative group $F^{\times}=F \backslash\{0\}$ is cyclic. Hint. Use the fact that a polynomial of degree m has at most m roots in F.
(c) Deduce that if F is a finite field then F^{\times}is cyclic. For each field F having at most 7 elements, find an explicit generator of F^{\times}.
(d) Prove that for any odd prime p, the set of nonzero squares is an index 2 subgroup of \mathbb{F}_{p}^{\times}.
2. The goal is to prove that $f(x)=x^{4}+1 \in \mathbb{Z}[x]$ is reducible modulo every prime number p. You already know $(\mathrm{PS} \# 1)$ that $f(x)$ irreducible in $\mathbb{Q}[x]$.
(a) Factor $f(x)$ modulo 2.
(b) Assume that $-1=u^{2}$ is a square in \mathbb{F}_{p}. Then use the equality $x^{4}+1=x^{4}-u^{2}$ to factor $f(x)$ modulo p.
(c) Assume that p is odd and $2=v^{2}$ is a square in \mathbb{F}_{p}. Then use the equality $x^{4}+1=$ $\left(x^{2}+1\right)^{2}-(v x)^{2}$ to factor $f(x)$ modulo p.
(d) Prove that if p is odd and neither -1 nor 2 is a square in \mathbb{F}_{p}, then -2 is a square. In this case, factor $f(x)$ modulo any such p. Hint. For the first part, use the previous problem.
(e) Conclude that $x^{4}+1$ is reducible modulo every prime p.
3. Let K and K^{\prime} be field extensions of a field F.
(a) Prove that any F-homomorphism $\varphi: K \rightarrow K^{\prime}$ is injective.
(b) Prove that if K^{\prime} / F is finite and $\varphi: K \rightarrow K^{\prime}$ is an F-homomorphism, then K / F is finite.
(c) Assume that both K and K^{\prime} are finite over F, and that $\varphi: K \rightarrow K^{\prime}$ is an F-homomorphism. The φ is an F-isomorphism if and only if $[K: F]=\left[K^{\prime}: F\right]$.
(d) Prove that $f(x)=x^{2}-4 x+2 \in \mathbb{Q}[x]$ is irreducible. Prove that the extensions $K=$ $\mathbb{Q}[x] /(f(x))$ and $\mathbb{Q}(\sqrt{2})$ of \mathbb{Q} are \mathbb{Q}-isomorphic and exhibit an explicit \mathbb{Q}-isomorphism between them.
4. Let $\alpha \approx-1.7693$ be the real root of $x^{3}-2 x+2$. In the extension $\mathbb{Q}(\alpha) / \mathbb{Q}$, write the elements α^{-1} and $(\alpha+1)^{-1}$ explicitly as a polynomial in α with coefficients in \mathbb{Q}. Hint. Remember the algorithm using the Bezout identity (e.g., FT p. 16).
5. Let F be a field of characteristic $\neq 2$ and let K / F be a field extension of degree 2 .
(a) Prove that there exists $\alpha \in K$ with $\alpha^{2} \in F$ such that $K=F(\alpha)$. We often write $\alpha=\sqrt{a}$ if $\alpha^{2}=a \in F$. Hint. Get inspiration from the quadratic formula.
(b) For $a, b \in F^{\times}$prove that $F(\sqrt{a}) \cong F(\sqrt{b})$ if and only if $a=u^{2} b$ for some $u \in F^{\times}$.
(c) Deduce that there is a bijection between the set of F-isomorphism classes of field extensions K / F with $[K: F] \mid 2$ and the group $F^{\times} / F^{\times 2}$ of units in F modulo squares.
(d) If F is a finite field of characteristic $\neq 2$, prove that F has a unique quadratic extension (up to F-isomorphism).
6. For each extension K / F and each element $\alpha \in K$, find the minimal polynomial of α over F (and prove that it is the minimal polynomial).
(a) i in \mathbb{C} / \mathbb{R}
(b) i in \mathbb{C} / \mathbb{Q}
(c) $(1+\sqrt{5}) / 2$ in \mathbb{R} / \mathbb{Q}
(d) $\sqrt{2+\sqrt{2}}$ in \mathbb{R} / \mathbb{Q}
7. Let $\pi \in \mathbb{R}$ be the area of a unit circle and let $\alpha=\sqrt{\pi^{2}+2}$. Consider the field $K=\mathbb{Q}(\pi, \alpha)$. For the following field extensions, determine whether they are transcendental and/or algebraic and/or finite and/or simple, and if you determine the extension is simple and algebraic, find a simple generator and determine its minimal polynomial.
(a) K / \mathbb{Q}
(b) $K / \mathbb{Q}(\pi)$
(c) $K / \mathbb{Q}(\alpha)$
(d) $K / \mathbb{Q}(\pi+\alpha)$
