Dartmouth College Department of Mathematics

Math 81/111 Abstract Algebra

Winter 2024
Problem Set \# 4 (due via Canvas upload by midnight Sunday 4 February)

Problems:

1. Let F be a field and $f(x) \in F[x]$ a monic polynomial of degree n. Let E be a splitting field of f over F, so that $f(x)=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)$ over E.
(a) Prove that $\prod_{1 \leq i<j \leq n}\left(\alpha_{i}-\alpha_{j}\right)^{2} \in F$. This is called the discriminant $\Delta(f)$ of f.

Hint. You might need the Fundamental Theorem of Symmetric Polynomials.
(b) Prove that $\Delta(f)=0$ if and only if $f(x)$ has a repeated root in E.
(c) Prove that if Δ is not a square in F then $[E: F]$ is even. Hint. The tower law.
2. Let F be a field and let $g(x)=x^{2}+a x+b \in F[x]$. Let $K=F(\alpha)$, where α is a root of $g(x)$, so that $g(x)=(x-\alpha)(x-\beta)$ over K. This problem is mostly review of what you already know about quadratic polynomials, so you don't need to write much!
(a) Prove that $\Delta(g)=(\alpha-\beta)^{2}=a^{2}-4 b \in F$. Hint. Use elementary symmetric polynomials.
(b) Assume that the characteristic of F is not 2. Prove that $K=F(\sqrt{\Delta(g)})$. Deduce that $g(x)$ is irreducible over F if and only if $\Delta(g)$ is not a square in F. Also, prove that $g(x)$ is a square in $F[x]$ if and only if $\Delta(g)=0$. Hint. Use the quadratic formula.
(c) Now let $F=\mathbb{F}_{2}(t)$ be the rational function field over \mathbb{F}_{2}. Let $g(x)=x^{2}-t \in F[x]$. Prove that $g(x)$ is irreducible over F, though it satisfies $\Delta(g)=0$. Recall, from lecture, that $K \cong F(\sqrt{t})$ is an example of an inseparable extension (though in lecture we didn't quite prove the irreducibility of $g(x)$). Hint. Proving irreducibility can either go like proving $\sqrt{2}$ is irrational, or using Eisenstein for the ring $\mathbb{F}_{2}[t]$.
Weird stuff can happen with quadratic polynomials in characteristic 2 !
3. Let F be a field and let $f(x)=x^{3}+p x+q \in F[x]$. Let L be the splitting field of f, so that $f(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right)$ over L, for elements $\alpha_{1}, \alpha_{2}, \alpha_{3} \in L$.
(a) Prove that $\Delta(f)=\prod_{1 \leq i<j \leq 3}\left(\alpha_{i}-\alpha_{j}\right)^{2}=-4 p^{3}-27 q^{2} \in F$.
(b) Let $\alpha \in L$ be one of the roots of $f(x)$. Factor $f(x)=(x-\alpha) g(x)$ over $F(\alpha)$, where $g(x) \in F(\alpha)[x]$ is quadratic. Prove that $\Delta(f)=g(\alpha)^{2} \Delta(g)$.
(c) Assume that the characteristic of F is not 2 and let α be a root of $f(x)$. Prove that $L=F(\alpha, \sqrt{\Delta(f)})$. Deduce that if $\Delta(f)$ is a square in F then L has degree at most 3 over F, and in addition, that if $f(x)$ is irreducible, then L has degree 3 over F. Also, deduce that if $f(x)$ is reducible over F, then $L=F(\sqrt{\Delta(f)})$; for this, you cannot necessarily just assume that the root α is in F.
(d) Assume that the characteristic of F is not 2 or 3. Prove that if $\Delta(f)=0$ then $L=F$, i.e., all the roots of $f(x)$ are in F.
(e) Write down a monic irreducible cubic polynomial over $\mathbb{F}_{3}(t)$ whose discriminant is 0 , and factor it over its splitting field. Write down a monic cubic polynomial over $\mathbb{F}_{2}(t)$ whose discriminant is 0 , and whose splitting field is nontrivial. Hint. Think inseparably.
(f) Now let $F=\mathbb{F}_{2}(t)$ and let $f(x)=x^{3}+t x+t$. Prove that $f(x)$ is irreducible over F, has nonzero square discriminant, yet its splitting field L has degree 6 over F. Hint. You may find it useful to use Gauss's Lemma for the ring $F[t]$, see Dummit and Foote, §9.3.
Weird stuff can happen with cubic polynomials in characteristics 2 and 3!
4. Let p and q be distinct prime numbers. Prove that $\mathbb{Q}(\sqrt{p}+\sqrt{q})=\mathbb{Q}(\sqrt{p}, \sqrt{q})$ and find the minimal polynomial of $\sqrt{p}+\sqrt{q}$ over \mathbb{Q}.
5. Let F be a field of characteristic $\neq 2$.
(a) Let $a_{1}, \ldots, a_{n} \in F$ be distinct elements such that no product $a_{i_{1}} \cdots a_{i_{r}}$, with distinct indices i_{j}, is a square in F. Prove that $K=F\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{n}}\right)$ has degree 2^{n} over F.
(b) Prove that the field $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{7}, \sqrt{11}, \ldots)$ gotten by adjoining the square roots of all prime numbers to \mathbb{Q}, is an infinite degree algebraic extension of \mathbb{Q}.

