Dartmouth College Department of Mathematics

Math 81/111 Abstract Algebra

Winter 2024
Problem Set \# 6 (due via Canvas upload by midnight Monday 26 February)
Notation: The Galois group of a polynomial $f(x)$ over a field F is defined to be the F automorphism group of its splitting field E.

Problems:

1. Let $f(x) \in \mathbb{R}[x]$ be a monic polynomial of degree $n \geq 1$ with discriminant Δ.
(a) Assume that $f(x)$ has no repeated roots and let r_{2} be the number of pairs of complex conjugate (nonreal) roots. Prove that the sign of Δ is $(-1)^{r_{2}}$.
(b) Let $f(x) \in \mathbb{R}[x]$ be a cubic polynomial. Prove that $\Delta \geq 0$ if and only if the roots of $f(x)$ are all real.
2. Let $\gamma=\sqrt{2+\sqrt{2}} \in \mathbb{R}$.
(a) Show that $\mathbb{Q}(\gamma) / \mathbb{Q}$ is Galois with cyclic Galois group.
(b) Show that $\mathbb{Q}(\gamma, i)=\mathbb{Q}\left(\zeta_{16}\right)$ and calculate the Galois $\operatorname{group} \operatorname{Gal}(\mathbb{Q}(\gamma, i) / \mathbb{Q})$.
3. Let K / F be a Galois extension with Galois group isomorphic to $C_{2} \times C_{12}$. How many subextensions of $K / M / F$ are there satisfying:
(a) $[K: M]=6$
(b) $[M: F]=6$
(c) $\operatorname{Gal}(K / M)$ isomorphic to C_{6}
(d) $\operatorname{Gal}(M / F)$ isomorphic to C_{6}
4. This problem will show you a tower of extensions $K / L / F$, with K / F radical but L / F not radical. Let $K=\mathbb{Q}\left(\zeta_{7}\right)$ and $L=\mathbb{Q}\left(\zeta_{7}+\bar{\zeta}_{7}\right)$.
(a) Prove that K / \mathbb{Q} is radical.
(b) Prove that L / \mathbb{Q} is not radical. Warning. A simple extension $F(\alpha)$ can be radical even if α is not an nth root of anything in F (try to think of an example).
(c) Write down a polynomial of degree 3 over \mathbb{Q} (that is solvable by radicals but) whose splitting field is not a radical extension of \mathbb{Q}.
5. Let p be a prime number and S_{p} the symmetric group on p things.
(a) Prove that an element of S_{p} has order p if and only if it is a p-cycle.
(b) Prove that S_{p} is generated by any choice of element of order p and a transposition. Find a composite n and a choice of an n-cycle and a transposition that do not generate S_{n}. Hint. For a general n, you could prove that S_{n} is generated by (12) and $(12 \cdots n)$. What is special about p being prime is that every element of order p in S_{p} is a p-cycle and every power of a p-cycle is a p-cycle (or the identity), which are facts that you should verify. Up to conjugating (which doesn't affect whether it generates S_{p}) the subgroup generated by your choice of p-cycle and transposition, you can assume that your transposition is (12), and up to taking powers of your p-cycle, that it starts $(12 \cdots)$. What then?
(c) Let $F \subset \mathbb{R}$ be a subfield. Prove that if $f(x) \in F[x]$ is an irreducible polynomial of degree p having $p-2$ real roots, then the Galois group of $f(x)$ over F is isomorphic to S_{p}.
(d) Let $F \subset \mathbb{R}$ be a subfield. Prove that if $f(x) \in F[x]$ is an irreducible cubic polynomial with $\Delta<0$, then the Galois group of $f(x)$ over F is isomorphic to S_{3}.
(e) Prove that the Galois group of the polynomial $x^{3}-x-1$ over \mathbb{Q} is isomorphic to S_{3}.
(f) Prove that the Galois group of the polynomial $x^{5}-x^{4}-x^{2}-x+1$ over \mathbb{Q} is isomorphic to S_{5}. Hint. You are allowed to use real analysis (e.g., the intermediate value theorem), but as a challenge, try to find a purely algebraic (possibly computer-aided) way.
