DARTMOUTH COLLEGE DEPARTMENT OF MATHEMATICS Math 81/111 Abstract Algebra Winter 2024

Problem Set # 6 (due via Canvas upload by midnight Monday 26 February)

Notation: The Galois group of a polynomial f(x) over a field F is defined to be the F-automorphism group of its splitting field E.

Problems:

1. Let $f(x) \in \mathbb{R}[x]$ be a monic polynomial of degree $n \ge 1$ with discriminant Δ .

- (a) Assume that f(x) has no repeated roots and let r_2 be the number of pairs of complex conjugate (nonreal) roots. Prove that the sign of Δ is $(-1)^{r_2}$.
- (b) Let $f(x) \in \mathbb{R}[x]$ be a cubic polynomial. Prove that $\Delta \ge 0$ if and only if the roots of f(x) are all real.
- **2.** Let $\gamma = \sqrt{2 + \sqrt{2}} \in \mathbb{R}$.
 - (a) Show that $\mathbb{Q}(\gamma)/\mathbb{Q}$ is Galois with cyclic Galois group.
 - (b) Show that $\mathbb{Q}(\gamma, i) = \mathbb{Q}(\zeta_{16})$ and calculate the Galois group $\operatorname{Gal}(\mathbb{Q}(\gamma, i)/\mathbb{Q})$.

3. Let K/F be a Galois extension with Galois group isomorphic to $C_2 \times C_{12}$. How many subextensions of K/M/F are there satisfying:

- (a) [K:M] = 6
- (b) [M:F] = 6
- (c) $\operatorname{Gal}(K/M)$ isomorphic to C_6
- (d) $\operatorname{Gal}(M/F)$ isomorphic to C_6

4. This problem will show you a tower of extensions K/L/F, with K/F radical but L/F not radical. Let $K = \mathbb{Q}(\zeta_7)$ and $L = \mathbb{Q}(\zeta_7 + \overline{\zeta}_7)$.

- (a) Prove that K/\mathbb{Q} is radical.
- (b) Prove that L/\mathbb{Q} is not radical. Warning. A simple extension $F(\alpha)$ can be radical even if α is not an *n*th root of anything in F (try to think of an example).
- (c) Write down a polynomial of degree 3 over \mathbb{Q} (that is solvable by radicals but) whose splitting field is not a radical extension of \mathbb{Q} .
- **5.** Let p be a prime number and S_p the symmetric group on p things.
 - (a) Prove that an element of S_p has order p if and only if it is a p-cycle.
 - (b) Prove that S_p is generated by any choice of element of order p and a transposition. Find a composite n and a choice of an n-cycle and a transposition that do not generate S_n . **Hint.** For a general n, you could prove that S_n is generated by (12) and $(12 \cdots n)$. What is special about p being prime is that every element of order p in S_p is a p-cycle and every power of a p-cycle is a p-cycle (or the identity), which are facts that you should verify. Up to conjugating (which doesn't affect whether it generates S_p) the subgroup generated by your choice of p-cycle and transposition, you can assume that your transposition is (12), and up to taking powers of your p-cycle, that it starts $(12 \cdots)$. What then?
 - (c) Let $F \subset \mathbb{R}$ be a subfield. Prove that if $f(x) \in F[x]$ is an irreducible polynomial of degree p having p-2 real roots, then the Galois group of f(x) over F is isomorphic to S_p .

- (d) Let $F \subset \mathbb{R}$ be a subfield. Prove that if $f(x) \in F[x]$ is an irreducible cubic polynomial with $\Delta < 0$, then the Galois group of f(x) over F is isomorphic to S_3 .
- (e) Prove that the Galois group of the polynomial $x^3 x 1$ over \mathbb{Q} is isomorphic to S_3 .
- (f) Prove that the Galois group of the polynomial $x^5 x^4 x^2 x + 1$ over \mathbb{Q} is isomorphic to S_5 . **Hint.** You are allowed to use real analysis (e.g., the intermediate value theorem), but as a challenge, try to find a purely algebraic (possibly computer-aided) way.