Dartmouth College Department of Mathematics

Math 81/111 Abstract Algebra
Winter 2024
Problem Set \# 7 (Optional/Extra Credit! Upload to Canvas by midnight Tuesday, March 5)

Problems:

1. For $n \geq 0$, let $\phi_{n}=\zeta_{2^{n+2}}$ and $\xi_{n}=\phi_{n}+\bar{\phi}_{n}$. Let $K_{n}=\mathbb{Q}\left(\phi_{n}\right)$ and $K_{n}^{+}=\mathbb{Q}\left(\xi_{n}\right)$.
(a) Prove that $\left[K_{n}: K_{n}^{+}\right]=2$ and $\left[K_{n}^{+}: \mathbb{Q}\right]=2^{n}$. You may use the fact that $\left[K_{n}: \mathbb{Q}\right]=2^{n+1}$.
(b) Determine the quadratic equation that ϕ_{n} satisfies over K_{n}^{+}in terms of ξ_{n}.
(c) Prove that $\xi_{n+1}^{2}=2+\xi_{n}$, and hence that

$$
\xi_{n}=\sqrt{2+\sqrt{2+\sqrt{\cdots+\sqrt{2}}}}
$$

where there are n nested square roots. This provides an explicit presentation for the 2 -power roots of unity, showing that they are constructible (which we already knew).
(d) Prove that K_{n} / \mathbb{Q} is Galois with group $\left(\mathbb{Z} / 2^{n+2} \mathbb{Z}\right)^{\times}$and that K_{n}^{+} / \mathbb{Q} is Galois with group cyclic of order 2^{n}. Hint. Recall the isomorphism $\left(\mathbb{Z} / 2^{n+2} \mathbb{Z}\right)^{\times} \cong C_{2} \times C_{2^{n}}$, where C_{m} is a (multiplicativly written) cyclic group of order m.
2. Let p be an odd prime number, $\zeta=\zeta_{p}$, and $K=\mathbb{Q}(\zeta)$. We know that K / \mathbb{Q} is a Galois extension with (cyclic) group $G \cong(\mathbb{Z} / p \mathbb{Z})^{\times}$and let $\sigma \in G$ be a generator. Let $H \subset G$ be the unique subgroup of index 2 . Define

$$
\eta_{0}=\sum_{\tau \in H} \tau(\zeta), \quad \eta_{1}=\sum_{\tau \in G \backslash H} \tau(\zeta) .
$$

These are called the periods of ζ with respect to H.
(a) Prove that $\sigma\left(\eta_{0}\right)=\eta_{1}$ and $\sigma\left(\eta_{1}\right)=\eta_{0}$ and that

$$
\eta_{0}=\sum_{a \text { square }} \zeta^{a}, \quad \eta_{1}=\sum_{a \text { nonsquare }} \zeta^{a}
$$

where the sums are taken over the set of squares and nonsquares, respectively, in $(\mathbb{Z} / p \mathbb{Z})^{\times}$.
(b) Prove that $\eta_{0}+\eta_{1}=-1$, and more generally, that $\sum_{\tau \in G} \tau\left(\zeta^{a}\right)=-1$ for any a with $p \nmid a$.
(c) Let $g=\sum_{i=0}^{p-1} \zeta^{i^{2}}$ be the classical Gauss sum. Prove that

$$
g=\sum_{i=0}^{p-2}(-1)^{i} \sigma^{i}(\zeta)=\eta_{0}-\eta_{1} .
$$

(d) Prove that $\tau(g)=g$ if $\tau \in H$ and $\tau(g)=-g$ if $\tau \in G \backslash H$. Conclude, using the Galois correspondence, that $[\mathbb{Q}(g): \mathbb{Q}]=2$. Also conclude that $\bar{g}=g$ if -1 is a square modulo p and that $\bar{g}=-g$ if -1 is not a square modulo p, where the overline is complex conjugation. Hint. For the last part, recall that inversion is the same as complex conjugation for any root of unity.
(e) Prove that $g \bar{g}=p$. Hint. Transform $g \bar{g}$ to the double sum $\sum_{k=0}^{p-2}(-1)^{k} \sum_{j=0}^{p-2} \sigma^{j}\left(\sigma^{k}(\zeta) / \zeta\right)$, then use part (b).
(f) Prove that $g^{2}=(-1)^{(p-1) / 2} p$.
(g) Finally, conclude that $\mathbb{Q}\left(\sqrt{(-1)^{(p-1) / 2} p}\right)$ is the unique quadratic subfield of $\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}$.
3. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible quartic polynomial and $K=\mathbb{Q}(\alpha)$, where α is a root of $f(x)$. Let $G \subset S_{4}$ be the Galois group of the splitting field of $f(x)$ over \mathbb{Q}.
(a) Prove that K / \mathbb{Q} has no nontrivial intermediate subfields if and only if $G=A_{4}$ or $G=S_{4}$.
(b) Prove that α is constructible if and only if the normal closure of $\mathbb{Q}(\alpha) / \mathbb{Q}$ has Galois group C_{4}, V_{4} (Klein four), or D_{8}.
4. Fundamental Theorem of Algebra. An ordered field is a field F together with a subset F^{+} of positive elements satisfying: $a, b \in F^{+} \Rightarrow a+b \in F^{+}$and $a b \in F^{+}$and for each $a \in F$ exactly one of $a \in F^{+}, a=0$, or $-a \in F^{+}$is true.
(a) Prove that if F is an ordered field then any nonzero square is positive, that -1 is not positive, and that F has characteristic zero. Also, prove that $F(i)=F[x] /\left(x^{2}+1\right)$ is not an ordered field. Challenge. Prove that a field F can be ordered if and only if -1 is not a sum of squares.
(b) An ordered field F is called real closed if every positive element has a square root and every polynomial of odd degree over F has a root. Prove that \mathbb{R} and $\mathbb{R} \cap \overline{\mathbb{Q}}$ are real closed. Hint. You may need a tiny bit of analysis, but try to keep it to a minimum.
(c) Prove that a real closed field does not have any nontrivial finite extensions of odd degree.
(d) Prove that if F is real closed then the only quadratic extension of F is $F(i)$, and every element of $F(i)$ has a square root.
(e) Prove that a field K is algebraically closed if and only if it does not admit any nontrivial algebraic extensions if and only if it does not admit any nontrivial finite extension.
(f) Prove that if F is a real closed field then $F(i)$ is algebraically closed. Hint. First, let $L^{\prime} / F(i)$ be a finite extension and L / F the normal closure of L^{\prime} / F. Then why is L / F a Galois extension whose group G has even order? Let $H \subset G$ be a Sylow 2-subgroup. Use the Galois correspondence with $H \subset G$ to prove that G is actually a 2-group. Remember the result from abstract algebra that every finite p-group has a subgroup of index p, and use this, with the Galois correspondence, to prove that actually G must be trivial.
(g) Deduce that \mathbb{C} and $\overline{\mathbb{Q}}$ are algebraically closed.

