Dartmouth College Department of Mathematics Math 81/111 Abstract Algebra Winter 2025

Problem Set # 1 (due via Canvas upload by 5 pm on Friday 17 January)

Reading: DF 9.1–9.4, FT 1, pp. 7–14.

Problems:

1. For $f(x) = x^4 - 1$ and $g(x) = 3x^2 + 3x$ find: the quotient and remainder after dividing f by g; the gcd of f and q; and the expression of this gcd in the form $af + bq$ for some $a, b \in \mathbb{Q}[x]$. For the last two, you'll need to recall the Euclidean Algorithm and the Bezout Identity.

2. Prove that two polynomials $f, g \in \mathbb{Z}[x]$ are relatively prime in $\mathbb{Q}[x]$ (i.e., they share no common nonconstant factor) if and only if the ideal $(f, g) \subset \mathbb{Z}[x]$ contains a nonzero integer.

3. Decide whether each of the following polynomials is irreducible, and if not, then find the factorization into monic irreducibles.

(a) $x^4 + 1 \in \mathbb{R}[x]$

(b)
$$
x^4 + 1 \in \mathbb{Q}[x]
$$

- (c) $x^7 + 11x^3 33x + 22 \in \mathbb{Q}[x]$
- (d) $x^4 + x^3 + x^2 + x + 1 \in \mathbb{Q}[x]$
- (e) $x^3 7x^2 + 3x + 3 \in \mathbb{Q}[x]$
- **4.** Irreducible polynomials over finite fields. Let \mathbb{F}_3 be the field with three elements.
	- (a) Determine all the monic irreducible polynomials of degree ≤ 3 in $\mathbb{F}_3[x]$.
	- (b) Determine the number of monic irreducible polynomials of degree 4 in $\mathbb{F}_3[x]$.

5. Symmetric polynomials. Let R be a commutative ring with 1 and $R[x_1, \ldots, x_n]$ the ring of polynomials in the variables x_1, \ldots, x_n with coefficients in R. Consider the symmetric group S_n acting on the set $\{x_1, \ldots, x_n\}$ by permutations. Extend this action linearly to $R[x_1, x_2, \ldots, x_n]$; for example, if $\sigma = (123) \in S_3$, then

$$
\sigma \cdot (x_1x_2 - 2x_3^2 + 3x_2x_3^2) = x_2x_3 - 2x_1^2 + 3x_3x_1^2.
$$

Then this action satisfies $\sigma \cdot (f + g) = \sigma \cdot f + \sigma \cdot g$ and $\sigma \cdot (fg) = (\sigma \cdot f)(\sigma \cdot g)$ for all $\sigma \in S_n$ and all $f, g \in R[x_1, \ldots, x_n]$.

- (a) Let $S \subset R[x_1,\ldots,x_n]$ be the subset fixed under the action of S_n . Prove that S is a subring with 1. This is called the **ring of symmetric polynomials**.
- (b) For each $n \geq 0$, define polynomials $e_i \in R[x_1, \ldots, x_n]$ by $e_0 = 1$ and

$$
e_1 = x_1 + \dots + x_n
$$
, $e_2 = \sum_{1 \le i < j \le n} x_i x_j$, ..., $e_n = x_1 \dots x_n$

and $e_k = 0$ for $k > n$. In words, e_k is the sum of all distinct products of subsets of k distinct variables. Prove that each e_k is a symmetric polynomial. These are called the elementary symmetric polynomials.

(c) The **generic polynomial** of degree n is the polynomial

$$
f(x) = (x - x_1)(x - x_2) \cdots (x - x_n)
$$

in the ring $R[x_1, \ldots, x_n][x]$ of polynomials in x with coefficients in $R[x_1, \ldots, x_n]$. Prove (by induction) that

$$
f(x) = (x - x_1)(x - x_2) \cdots (x - x_n) = x^n - e_1 x^{n-1} + e_2 x^{n-2} + \cdots + (-1)^n e_n = \sum_{j=0}^n (-1)^{n-j} e_{n-j} x^j.
$$

(d) For each $k \geq 1$, define the **power sums** $p_k = x_1^k + \cdots + x_n^k$ in $R[x_1, \ldots, x_n]$. Clearly, the power sums are symmetric. Verify the following identities by hand:

$$
p_1 = e_1, \quad p_2 = e_1 p_1 - 2e_2, \quad p_3 = e_1 p_2 - e_2 p_1 + 3e_3
$$

In general **Newton's identities** in $R[x_1, \ldots, x_n]$ are (recall that $e_k = 0$ for $k > n$):

$$
p_k - e_1 p_{k-1} + e_2 p_{k-2} - \dots + (-1)^{k-1} e_{k-1} p_1 + (-1)^k k e_k = 0.
$$

Prove Newton's identities whenever $k \geq n$.

Hint. For each i, consider the equation in part (c) for $f(x_i)$ and sum all these equations together. This gives Newton's identity for $k = n$. Set extra variables to zero to get the identities for $k > n$ from this. (Fun. Can you come up with a proof when $1 \leq k \leq n$?)

- 6. Use the force, my Newton!
	- (a) If x, y, z are complex numbers satisfying

 $x+y+z=1$, $x^2+y^2+z^2=2$, $x^3+y^3+z^3=3$,

then prove that $x^n + y^n + z^n$ is rational for any positive integer n.

- (b) Calculate $x^4 + y^4 + z^4$.
- (c) Prove that each of x, y, z are not rational numbers.