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Problem Set # 4 (due via Canvas upload by midnight Friday 7 February)

Problems:

1. Let F be a field and f(x) ∈ F [x] a monic polynomial of degree n. Let E be a splitting field
of f over F , so that f(x) = (x− α1) · · · (x− αn) over E.

(a) Prove that
∏

1≤i<j≤n(αi − αj)
2 is in F . This is called the discriminant ∆(f) of f .

Hint. You might need the Fundamental Theorem of Symmetric Polynomials.

(b) Prove that ∆(f) = 0 if and only if f(x) has a repeated root in E.

(c) Prove that if ∆ is not a square in F then [E : F ] is even. Hint. The tower law.

2. Let F be a field and let g(x) = x2 + ax+ b ∈ F [x]. Let K = F (α), where α is a root of g(x),
so that g(x) = (x−α)(x− β) over K. This problem is mostly review of what you already know
about quadratic polynomials, so you don’t need to write much!

(a) Prove that ∆(g) = (α−β)2 = a2−4b ∈ F . Hint. Use elementary symmetric polynomials.

(b) Assume that the characteristic of F is not 2. Prove that K = F (
√

∆(g)). Deduce that
g(x) is irreducible over F if and only if ∆(g) is not a square in F . Also, prove that g(x)
is a square in F [x] if and only if ∆(g) = 0. Hint. Use the quadratic formula.

(c) Now let F = F2(t) be the rational function field over F2. Let g(x) = x2 − t ∈ F [x].
Prove that g(x) is irreducible over F , though it satisfies ∆(g) = 0. Recall, from lecture,
that K ∼= F (

√
t) is an example of an inseparable extension (though in lecture we only

indicated how to prove the irreducibility of g(x)). Hint. Proving irreducibility can either
go like proving

√
2 is irrational, or using Eisenstein for the ring F2[t].

Weird stuff can happen with quadratic polynomials in characteristic 2!

3. Let F be a field and let f(x) = x3 + px+ q ∈ F [x]. Let L be the splitting field of f , so that
f(x) = (x− α1)(x− α2)(x− α3) over L, for elements α1, α2, α3 ∈ L.

(a) Prove that ∆(f) =
∏

1≤i<j≤3(αi − αj)
2 = −4p3 − 27q2 ∈ F .

(b) Let α ∈ L be one of the roots of f(x). Factor f(x) = (x − α)g(x) over F (α), where
g(x) ∈ F (α)[x] is quadratic. Prove that ∆(f) = g(α)2∆(g).

(c) Assume that the characteristic of F is not 2. If f(x) is irreducible and α is a root of f(x),

prove that L = F (α,
√

∆(f)). Deduce that, in this case, ∆(f) is a square in F if and

only if L has degree 3 over F . If f(x) is reducible over F , prove that L = F (
√

∆(f));
for this, you cannot necessarily just assume that the root α is in F in the previous case..

(d) Assume that the characteristic of F is not 2 or 3. Prove that if ∆(f) = 0 then L = F ,
i.e., all the roots of f(x) are in F .

(e) Write down a monic irreducible cubic polynomial over F3(t) whose discriminant is 0, and
factor it over its splitting field. Write down a monic cubic polynomial over F2(t) whose
discriminant is 0, and whose splitting field is nontrivial. Hint. Think inseparably.



(f) Now let F = F2(t) and let f(x) = x3 + tx+ t. Prove that f(x) is irreducible over F , has
nonzero square discriminant, yet its splitting field L has degree 6 over F . Hint. You
may find it useful to use Gauss’s Lemma for the ring F [t], see Dummit and Foote, §9.3.

Weird stuff can happen with cubic polynomials in characteristics 2 and 3!

4. Let p and q be distinct prime numbers. Prove that Q(
√
p +
√
q) = Q(

√
p,
√
q) and find the

minimal polynomial of
√
p+
√
q over Q.

5. Let F be a field of characteristic 6= 2.

(a) Let a1, . . . , an ∈ F be distinct elements such that no product ai1 · · · air , with distinct
indices ij , is a square in F . Prove that K = F (

√
a1, . . . ,

√
an) has degree 2n over F .

(b) Prove that the field Q(
√

2,
√

3,
√

5,
√

7,
√

11, . . . ) gotten by adjoining the square roots of
all prime numbers to Q, is an infinite degree algebraic extension of Q.
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