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Abstract. The star transform is a generalized Radon transform mapping a

function in Rn to the function whose value at a point is the integral along a
union of rays emanating from the point in a fixed set of directions, called branch

vectors. We show that the injectivity and inversion properties of the star trans-

form are connected to its dual differential operator, an object introduced in
this paper. We prove that if the set of branch vectors forms a symmetric shape

with respect to the action of a finite rotation group G, then the symbol of its

dual differential operator belongs to the ring of G-invariant polynomials. Fur-
thermore, we show that star transforms with degenerate symmetry correspond

to linear subspaces contained in the zero set of certain elementary symmetric

polynomials, and we investigate the associated real algebraic Fano varieties. In
particular, non-invertible star transforms in dimension 2 correspond to certain

real lines on the Cayley nodal cubic surface.

Introduction

Let f ∈ C∞
c (Rn) be a compactly supported smooth function on Rn. The diver-

gent beam transform Xu in the direction u ∈ Rn \ {0} is defined as the weighted
integral

(1) (Xuf)(x) :=

0∫
−∞

f(x+ tu) dt,

of f along the ray emanating from x ∈ Rn in the direction −u with the weight
1/||u||. The fundamental theorem of calculus implies that Xu is the two-sided
inverse of the directional derivative operator Du acting on the space of compactly
supported smooth functions.

The divergent beam transform serves as a building block for the star transform
studied in this paper. A simple version of the star transform in R2 was originally
investigated in relation to tomographic applications utilizing particle scattering
(see [2], [4], [23]). Here we define a more general notion of the star transform,
using elementary symmetric polynomials in the operators Xu (see Definition 1.2
and Section 6). For instance, let {u1, . . . , um} be a set of fixed (branch) vectors
in Rn \ {0}, and e1 be the first elementary symmetric polynomial in m variables.
Then, the corresponding star transform can be expressed as

S := e1(Xu1
, . . . ,Xum

) = Xu1
+ · · ·+ Xum

.

We show that the injectivity and inversion properties of the star transform S are
connected to its dual differential operator L, introduced in Section 2, which is a dif-
ferential operator with constant coefficients obtained by applying certain directional
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derivatives to S. In the example above, the dual differential operator associated
with S is L = Du1 . . .DumS, see Definition 2.2.

The relation between a star transform S and its dual differential operator L can
be utilized in both directions. In other words, some knowledge about one of them
can provide an insight into the features of the other. The results of Section 2 show
that one can use PDE techniques to identify whether a given star transform S is
injective or not, derive inversions for injective setups, and classify them according
to their stability.

Another set of interesting statements is obtained from consideration of symmetric
setups of the star transform. To give a simple outline of these results, let us consider
the example of Platonic solids in 3D (see Table 1). Each of these convex regular
polyhedra has an associated symmetry group G. By centering a Platonic solid
at the origin, one can interpret its vertices as the branches of a star transform,
which inherits the associated symmetry group. This symmetry affects the injectivity
properties of the star transform, leading to novel results in invariant theory and real
algebraic geometry. For example, the vertices of a cube occur in pairs of opposite
sign (i.e., u and −u), whereas this property does not hold for the vertices of a
tetrahedron. As we will demonstrate, the symmetry group of a cube induces a non-
invertible star transform, while the symmetry group of a tetrahedron leads to an
invertible one. The diagram below provides an outline of the results in this paper
stemming from star transforms with symmetry.

Star transforms with symmetry

Invariant theory Fano scheme of {ek(x) = 0}

Invertible Non-invertible

In Section 3, we prove the following, see Theorem 3.2 for the precise statement.

Theorem. If the set of the branch vectors of a star S forms a symmetric shape
with respect to a group G, then the symbol of L belongs to the ring of G-invariant
polynomials.

As an application of the latter result, we obtain a set of elegant formulas for
powers of the Laplace operator ∆ in Rn, expressed in terms of finite sums of iterated
directional derivatives. For example, let {u1, u2, u3} ⊂ R2 denote the set of radius
vectors of the vertices of an equilateral triangle centered at the origin. Then

e2(Du1
,Du2

,Du3
) = Du1

Du2
+Du1

Du3
+Du2

Du3
= C∆,

where C is some non-zero constant. For similar, but more general statements in R2

and R3 see formula (5) and Table 1.
Theorem 3.2 provides an interesting connection to invariant theory, which is

explored in Section 4. In particular, for a finite group G represented in Rn, one can
construct invariant polynomials in R[ξ1, . . . , ξn]G using the symbols of differential
operators L, which are dual to appropriately chosen star transforms S. This leads to
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an open question, whether the construction technique described above can produce
all generators of the invariant ring.

In Section 5, we explore non-invertible star transforms, for which the correspond-
ing dual differential operator vanishes, i.e. L ≡ 0. Interestingly, such a degeneracy
can be predicted using the injectivity properties of the ray transform (which in R2

is equivalent to the standard Radon transform). In Theorem 5.1, we prove that the
non-invertible star transforms are associated with real points of certain algebraic
varieties known as Fano schemes; in Proposition 5.3 and Theorem 5.1 we determine
parts of the geometry of these varieties and their connection with non-invertible
star transforms. For example, we show that the three smooth lines in Cayley’s
nodal cubic surface correspond to the three non-invertible star transforms on R2

with four branch vectors.
We finish the paper with some additional remarks, discussion of future work and

open problems listed in Section 8.

1. Star transforms

For a (nonzero) direction vector u in Rn, the divergent beam transform Xu is
defined by the formula (1). Considering Xu as a linear map C∞

c (Rn) to C∞(Rn),
we have XuDuf = DuXuf = f for any f ∈ C∞

c (Rn) using fundamental theorem of
calculus.

Note that divergent beam transforms on Rn commute, i.e., that XuXv = XvXu for
any direction vectors u and v. We also note that for all a > 0, we have Xau = 1

aXu.

Hence up to a positive scalar multiple, we can choose u ∈ Sn−1 on the unit sphere
in Rn. However, for n ≥ 2, in contrast to the directional derivative, the divergent
beam transform does not enjoy other linearity properties in the direction vector.
We are thus led to the following.

Definition 1.1. The algebra of formal star transforms on Rn is the free commu-
tative R-algebra generated by symbols Xu for u ∈ Sn−1.

A formal star transform S is determined by a list of branch vectors u1, . . . , um

and a polynomial p ∈ R[x1, . . . , xm], where S = p(Xu1
, . . . ,Xum

). We refer to p
as the polynomial symbol of S. In the standard basis on Rn, the branch vectors
determine the rows of an m × n branch matrix U , and we refer to (p, U) as the
(total) symbol of the star transform S. For visualization purposes, we often identify
the set of branch vectors with the vertices of a polytope in Rn. For convenience,
we do not necessarily assume that the branch vectors are on the unit sphere.

In this article, we focus on star transforms whose polynomial symbols are ele-
mentary symmetric polynomials.

Definition 1.2. A formal star transform on Rn has order d if its polynomial symbol
is homogeneous of degree d. An elementary star transform of order d on Rn is any
formal star transform with whose polynomial symbol is the elementary symmetric
polynomial ed of degree d.

Example 1.3. An elementary star transform of order 1 on R2 with branch vectors
u, v is S = Xu + Xv. Viewing S : C∞

c (Rn) → C∞(Rn), then for a compactly
supported function f on R2, we have that (Sf)(x) is the integral of f along the
V-shaped trajectory emanating from the vertex x in directions −u and −v. This
special case of the star transform with two branches is also known as a V-line or
broken ray transform, cf. [3, 14, 15, 18, 22].
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Generalizing this example, any formal star transform of order 1 on Rn deter-
mines a linear map from C∞

c (Rn) to C∞(Rn). However, the integrals defining star
transforms of higher order may diverge on a subset of Rn of positive measure, see
Section 6 for more details. In the absence of such divergence, we call a star trans-
forms realizable on Rn. The star transforms of order 1 are realizable on Rn, and the
discussion in Section 6 shows that all star transforms can become realizable when
restricted to a bounded region in Rn.

Remark 1.4. When the polynomial symbol of a star transform S is symmetric,
it implies that S only depends on the geometric properties of the set of branch
vectors {u1, . . . , um} and not on a specific ordering of the vectors. In particular,
elementary star transforms of order 1 have remarkable features, including exact
closed-form inversion formulas [4].

2. The dual differential operator

We consider differential operators on Rn with constant coefficients. The associ-
ation of such a differential operator

L =
∑
|I|≤d

cI
∂

∂xI

with its total symbol

pL(ξ) =
∑
|I|≤d

cIξ
I

determines an isomorphism between the R-algebra of differential operators on Rn

with constant coefficient and the polynomial algebra R[ξ1, . . . , ξn]. Here, we take
the usual multi-index conventions, where if I = (i1, . . . , in) is a multi-index, then
∂|I|

∂xI = ∂i1+...in

∂x
i1
1 ... ∂xin

n

and ξI = ξi11 . . . ξinn . Note that the symbol associated with a

directional derivative Du for u ∈ Rn is the linear polynomial pDu
(ξ) = u · ξ.

Definition 2.1. For a polynomial p ∈ R[x1, . . . , xm] define its reciprocal polyno-
mial as

(2) p∗(x1, . . . , xm) := xd1
1 . . . xdm

m p(x−1
1 , . . . , x−1

m ),

where dj = degj(p) is the degree of p in variable xj .

Definition 2.2. Let S be a star transform with a symbol (p, U). The dual differ-
ential operator L associated with S is the differential operator with total symbol
pL(ξ) = p∗(Uξ), where ξ = (ξ1, . . . , ξn)

T .

More explicitly, if

(3) S = p(Xu1 , . . . ,Xum),

then

(4) L = p∗(Du1 , . . . ,Dum).

Theorem 2.3. Let S be a nonzero star transform that is realizable over Rn. When
considered as an operator from C∞

c (Rn) to C∞(Rn), S is injective if and only if
the dual differential operator L is non-zero.
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Proof. Let S = p(Xu1
, . . . ,Xum

) be a star transform. Assuming that S is realizable
and not injective, there exists a non-zero function f ∈ C∞

c (Rn) such that Sf = 0.
Since DuXu = I for any u ∈ Rn, we have that

L = Dd1
u1

. . .Ddm
um

S

where dj is the degree of xj in p. Hence Sf = 0 implies that Lf = 0.
From this, we will deduce that L = 0. Consider the PDE Lf = 0 with f a

nonzero compactly supported smooth function. Taking the Fourier transform we
have

L̂f = pL(ξ) · f̂(ξ) = 0.

If the polynomial pL(ξ) is not identically zero then it only vanishes on a lower di-
mensional algebraic subset of Rn. On the other hand, the Paley–Wiener–Schwartz
theorem implies that the Fourier transform f̃(ξ) extends to a (non-zero) holomor-
phic function, hence cannot have a dense set of zeros. Thus we conclude that pL(ξ)
is uniformly zero, so that L = 0.
Now, consider the case where S is injective, i.e. Sf = 0 implies f = 0. If we assume
by contradiction that L = 0 then for an arbitrary f ∈ C∞

c (Rn)

SDd1
u1

. . .Ddm
um

f = Lf = 0

which by injectivity of S implies that Dd1
u1

. . .Ddm
um

f = 0. But, this was for an
arbitrary f leading to a contradiction. □

Example 2.4. Let p(y) = e1(y), where y = (y1, . . . , ym) and m is an even number.
Assume also that {u1, . . . , um} is a set of pairwise opposite vectors. It was shown
in [4] that the star transform S with symbol (p, U) is not injective. Therefore,
by Theorem 2.3, its dual differential operator of L must be identically zero, i.e.
σL(ξ) = em−1(Uξ) ≡ 0. See Section 5 for further results in this direction.

Remark 2.5. A relevant question is to identify all star transforms that correspond
to elliptic or hyperbolic differential operators L. It is evident from the observations
in [4] that the star transforms of order 1 in R2, which correspond to hyperbolic oper-
ators, have unstable inversions. Meanwhile, the ellipticity condition em−1(Uξ) ̸= 0
implies the absence of Type 2 singularities (see formula (13) in [4]), or equivalently,
the stable inversion of S.

3. Invariant theory and star symmetries

In this section, we study the star transform and its dual differential operator in
a setup where the branch vectors have symmetries associated with a group G. We
start with some particular examples to motivate the general statements that follow.

Let us consider a few star transforms in R2, with branches corresponding to the
radius vectors of the vertices of regular m-gons (see Figure 1). As discussed before,
those vectors make up the rows of the branch matrix U , and the star transforms
we consider have symbols of the form (ek, U).

In the case of regular polygons in 2D, symbolic calculations suggested that the
dual differential operator is either a power of Laplacian or zero, as we prove later
in this article. Namely,

(5) L = er(Du1 , . . . ,Dum) =

{
0, r = 2j + 1,

C∆j , r = 2j,
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Figure 1. Branch vectors of star transforms, corresponding to ra-
dius vectors of vertices of regular polygons in R2. The coordinates
of red vectors represent rows of the branch matrix U .

where C is some non-zero constant. In other words, the star transform with symbol
(em−r, U) corresponds to the dual symbol given by

(6) σL(ξ) = er(Uξ) =

{
0, r = 2j + 1,

C(ξ21 + ξ22)
j , r = 2j.

As an example, the reader can check this formula by choosing vertices of an equilat-
eral triangle as branch vectors (rows of 3× 2 matrix U) and computing the symbol
e2(Uξ). The above statement is not trivial since, although ξ21 + ξ22 is the generator
of the ring of O(2,R)-invariant polynomials, in all of these cases the group of sym-
metries is a finite subgroup of O(2,R). Later, we clarify this observation in a more
general setting.

Next, let us look at a few examples of the star transform in R3 with branches
corresponding to the radius vectors of the Platonic solids. We notice that in many
cases, the dual differential operator associated with such a symmetric star transform
is either zero or a power of the 3-dimensional Laplace operator (see Table 1).

Definition 3.1. For a group G ⊂ On(R), we call a star transform G-symmetric if
the branch vectors of S are invariant under the action of G. In other words, for
any g ∈ G we have Ug = αgU , where αg is a permutation matrix.

We are now ready to formulate and prove a general result, which (among other
things) implies the statements about the special cases discussed above.

Theorem 3.2. Let S be a star transform with symbol (p, U). If S is G-Symmetric
for some G ⊂ On(R), then the symbol of the dual differential operator L belongs to
R[ξ1, . . . , ξn]G, the ring of G-invariant polynomials. In particular, L is G-invariant.

Proof. Since p is a symmetric polynomial, the reciprocal polynomial p∗ is also
symmetric. The symbol of L is given by σ(ξ) = p∗(Uξ). Because the set of branch
vectors is G-symmetric, any g ∈ G ⊂ On(R) will permute that set. In other words,
Ug = αgU , where αg is a permutation matrix. Since p∗ is symmetric and invariant
under permutation we have

(7) σ(gξ) = p∗(Ugξ) = p∗(αgUξ) = p∗(Uξ) = σ(ξ)

proving that σ ∈ R[ξ1, . . . , ξn]G.
Alternative proof: One can show that the map α : m-Sets → R[ξ1, . . . , ξn] sending

a finite set {u1, . . . , um} ⊂ Rn to the polynomial p∗(Uξ) is G-equivariant. It then
follows that a G-fixed point in m-Sets, which is a G-invariant subset, is mapped to
a G-fixed point in R[ξ1, . . . , ξn], which is an invariant polynomial. □
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The star transforms associated with the Platonic solids

Tetrahedron
(m = 4) (e3, U) ⇒ L = e1(Du1

, . . . ,Du4
) = 0

(e2, U) ⇒ L = e2(Du1
, . . . ,Du4

) = C∆

Octahedron
(m = 6) (e4, U) ⇒ L = e2(Du1

, . . . ,Du6
) = C∆

(e2k−1, U) ⇒ L = em−2k+1(Du1
, . . . ,Du6

) = 0

Cube
(m = 8) (e6, U) ⇒ L = e2(Du1

, . . . ,Du8
) = C∆

(e2k−1, U) ⇒ L = em−2k+1(Du1 , . . . ,Du8) = 0

Icosahedron
(m = 12) (e10, U) ⇒ L = e2(Du1 , . . . ,Du12) = C∆

(e8, U) ⇒ L = e4(Du1 , . . . ,Du12) = C∆2

(e2k−1, U) ⇒ L = em−2k+1(Du1
, . . . ,Du12

) = 0

Dodecahedron
(m = 20) (e18, U) ⇒ L = e2(Du1 , . . . ,Du20) = C∆

(e16, U) ⇒ L = e4(Du1
, . . . ,Du20

) = C∆2

(e2k−1, U) ⇒ L = em−2k+1(Du1
, . . . ,Du20

) = 0

Table 1. If the rows of U are the branch vectors of the star trans-
form S with symbol (ek, U), then the dual differential operator has
the symbol em−k(Uξ). The table demonstrates the dual differen-
tial operators of the star transforms associated with the Platonic
solids in 3D. Images from Wikimedia.

Note that above statement can be applied to star transforms with symbol (p, U)
where p is any symmetric polynomial. More specifically, if p∗ is symmetric then
p∗(αgy) = p∗(y) for any g ∈ G (see equation 7).

Now, let us provide arguments to support the observations in formula (5) and
Table 1. The proof of formula (5) follows from the following well-known fact. For
the symmetry group G associated with a regular m-gon (G is the dihedral group of
order 2m acting on R2), the ring of invariants of G is generated by zz̄ and zm+ z̄m,
where z = x+ iy and z̄ = x− iy, and we have identified R2 with the complex plane
(e.g. see [9]).

To prove the statements included in Table 1, we need the following results
(e.g. see [20]). Let G be a finite reflection group. Then, the ring of polyno-
mial invariants of G is generated by n algebraically independent forms f1, . . . , fn,
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where n is the dimension of the underlying vector space. It is known that the de-
grees m1 + 1, . . . ,mn + 1 of the generators f1, . . . , fn, satisfy the product formula
(m1+1) . . . (mn+1) = g, where g is the order of G, and that the summ1+. . .+mn is
equal to the number of reflections in the group. Using the above statements and the
appropriate numbers for the Coxeter groups corresponding to the platonic solids,
one can compute that the generators of the ring of invariant polynomials in 3D
corresponding to the groups:

(1) A3 (tetrahedron) are of degree 2, 3, 4;
(2) B3 (cube and octahedron) are of degree 2, 4, 6;
(3) H3 (dodecahedron and icosahedron) are of degree 2, 6, 10.

Now, it is rather straightforward to prove the statements listed in Table 1. For
example, let us assume that U is characterized by the vertices of the tetrahedron.
Then e1(Uξ) must be zero, since a polynomial of degree 1 cannot be generated
by polynomials of degree 2, 3, or 4. Also, it is clear that p2(ξ) = ξ21 + ξ22 + ξ23 is
the generator of degree 2. Therefore, e2(Uξ) must coincide with p2(ξ). The other
statements of Table 1 are proved similarly. Note that these arguments are based on
degree of these invariants and, in fact, there are higher degree invariant polynomials
that are not expressed in terms of Laplacian.

4. Construction of invariant polynomials

In this section, we write an explicit formula for the symbol of the differential
operator L that is dual to a given star transform S. Then, for a finite group G rep-
resented in Rn, we provide a construction for invariant polynomials in R[ξ1, . . . , ξn]G
using appropriately chosen star transforms. The point of this construction is to of-
fer a new geometric interpretation for the invariants. We start with a G-invariant
set of points in Rn as branch vectors of a star transform implying that the corre-
sponding dual symbol is a G-invariant polynomial.

Given U ∈ Mm×n(R) and the symbol (em−r, U) of a star transform, we look for
an explicit expression for the dual symbol er(Uξ) as a polynomial in ξ1, . . . , ξn. We
denote by U(k1, . . . , kn) the m × r matrix with k1 copies of the 1st column of U ,
k2 copies of the 2nd column of U , etc, and k1 + · · ·+ kn = r.

Proposition 4.1. For U ∈ Mm×n(R) and ξ ∈ Rm we have

er(Uξ) =
∑
|k|=r

(
n

k1, . . . , kn

)
perm(U(k1, . . . , kn))ξ

k1
1 . . . ξkn

n

where perm denotes the permanent of rectangular matrices.

Proof. The elementary symmetric polynomial er can be expressed as

er(y1, . . . , ym) =
∑

i1<···<ir

yi1yi2 · · · yir
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and substituting the components yi = (Uξ)i =
∑n

j=1 uijξj we get

er(Uξ) =
∑

i1<···<ir

 n∑
j=1

ui1jξj

 · · ·

 n∑
j=1

uirjξj


=

∑
i1<···<ir

∑
1≤j1,...,jr≤n

(ui1j1 . . . uirjr ) ξj1 . . . ξjr

=
∑

1≤j1,...,jr≤n

[ ∑
i1<···<ir

(ui1j1 . . . uirjr )

]
ξj1 . . . ξjr

(8)

the expression inside the bracket is the permanent of the matrix created from
j1, . . . , jr columns of U (with possible repetition of indices). This expression is
independent of the order of columns and we can use a multi-index notation k =
(k1, . . . , kn) that is uniquely defined by the relation ξj1 . . . ξjr = ξk1

1 . . . ξkn
n . We now

have

er(Uξ) =
∑

1≤j1,...,jr≤n

perm(U(k1, . . . , kn))ξ
k1
1 . . . ξkn

n

=
∑
|k|=r

(
n

k1, . . . , kn

)
perm(U(k1, . . . , kn))ξ

k1
1 . . . ξkn

n

(9)

□

Now, let us explain the construction of invariant polynomials. Let G ⊂ GLn(R)
be a finite group represented in Rn. Let the branch set {u1, . . . , um} ⊂ Rn be a
finite set that is invariant under the action of G (for instance, given a finite set S
define the branch set as {g · s : g ∈ G, s ∈ S} ⊂ Rn). Given a symmetric poly-
nomial p in m variables we form the star transform S = p(Xu1 , . . . ,Xum) with the
dual differential operator L. Theorem 3.2 states that the symbol σL(ξ) = p∗(Uξ)
belongs to the ring of invariant polynomials R[ξ1, . . . , ξn]G. Then Proposition 4.1
provides an explicit formula for the invariants associated with star transforms. We
are now left with the following question:

Question: Does the above construction based on elementary symmetric poly-
nomials produce all generators of the invariant ring?

Some calculations suggest that the above construction of invariants is not equiv-
alent to the well-known Reynolds operator techniques (see [21] for Reynolds op-
erators and further discussion in invariant theory). However, it is not clear to us
whether this construction has an analogue in classical invariant theory.

5. Non-invertible star transforms and the Fano variety

In this section, we make use of the observation that a star transform S is non-
invertible if and only if its branch matrix U determines a linear subspace contained
in the algebraic variety defined by the vanishing of the symbol of its dual differen-
tial operator. The classification of non-invertible star transforms of order d then
becomes a problem about the real projective geometry of the appropriate Fano
variety of linear subspaces of a hypersurface in affine or projective space.
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Theorem 5.1. Let S be a star transform that is realizable over Rn with symbol
(p, U), where p ∈ R[x1, . . . , xm] and U is the m × n branch matrix. Then S is
non-invertible if and only if the image of U is an affine linear subspace contained
in the zero locus of the dual symbol p∗, i.e.,

Im(U) ⊂ V (p∗)(R) ⊂ Am(R).
Moreover, if S has order d, then S is non-invertible if and only if the image of U
is a projective linear subspace

P(Im(U)) ⊂ V (p∗)(R) ⊂ Pm−1(R)
in the projective hypersurface defined by the dual symbol.

Furthermore, star transforms with symbols (p, U) and (p, U ′) induce the same
linear subset of V (p∗) if and only if U ′ = Ug for some g ∈ GLn(R).

Proof. By Theorem 2.3, S is non-invertible if and only if the corresponding dual
differential operator L is zero if and only if its symbol pL(ξ) = p∗(Uξ) is uniformly
zero. In other words, this says that the range of U is contained in the zero locus of
p∗. If S has order d, then its dual symbol is a homogeneous polynomial, hence we
can consider everything projectively. The second statement follows from the fact
that U and U ′ have identical ranges if and only if U ′ = Ug. □

From now on, we will only consider star transforms of order d, hence only the
version in projective space. Later on, we will further consider the special case of
linear elementary star transforms, i.e., those with p = x1 + · · ·+ xm.

For a projective algebraic variety X ⊂ Pm−1, the Fano scheme of (k − 1)-
dimensional projective linear subspaces L ⊂ Pm−1 contained in X is a closed sub-
variety Fk−1(X) ⊂ G(k,m) of the Grassmannian of k-dimensional subspaces in
an m-dimensional vector space. See [11, §8.1.1], [1], [13, 12], [16, §3.3] for further
details.

Theorem 5.1 then says that for a fixed degree d homogeneous polynomial symbol
p ∈ R[x1, . . . , xm], the set of m×n branch matrices U (up to the action of GLn(R)
by right multiplication) whose associated star transform on Rn is non-invertible, is
in bijection with the set of R-points of Fn−1(X)(R), where X = {p∗ = 0} ⊂ Pm−1.

We will start with the example of linear elementary star transforms on R2 with
four branch vectors, from which we will be led to consider lines on Cayley’s nodal
cubic surface.

5.1. Lines on Cayley’s nodal cubic surface. If we consider non-invertible star
transforms on R2 with polynomial symbol p = e1(x1, . . . , x4) = x1 + . . .+ x4, then
their branch matrices determine a projective line in the hypersurface X3 ⊂ P3

defined by

p∗(x1, . . . , x4) = e3(x1, . . . , x4) = x2x3x4 + x1x3x4 + x1x2x4 + x1x2x3 = 0

which is Cayley’s nodal cubic surface. It is known that this cubic surface has four
nodes arranged at the vertices of a tetrahedron in P3, and contains the 6 lines
passing through pairs of nodes (we call these the singular lines), as well as 3 lines
in the smooth locus (we call these the smooth lines).

All these lines are defined over R. Indeed, the 6 singular lines are defined by the
intersections of pairs of coordinate hyperplanes

Lij = {xi = xj = 0},
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for 1 ≤ i < j ≤ 4, while the three smooth lines are

Mkl = {xk + xl = xm + xn = 0}

where {k, l,m, n} = {1, 2, 3, 4} is a matching.
As a scheme, F1(X3) has dimension 0 and degree 27 (as is the case for the Fano

scheme of lines on any normal cubic surface), with each of the 6 singular lines
appearing as points of multiplicity 4 and each of the 3 smooth lines appearing as
smooth points. More generally, Fano [13, 12] proved that lines on a surface through
a singular point correspond to singular points on the Fano scheme of lines.

In light of Theorem 5.1, the non-invertible star transforms on R2 whose branch
matrices determine the singular lines are degenerate, in the sense that two of the
four branch vectors are zero. However, non-invertible star transforms whose branch
matrices determine the smooth lines arise naturally from the theory of Radon trans-
form. We need the following basic fact about the invertibility of the star transform.

Lemma 5.2. If the branch vectors of a realizable star transform S of order 1 on
Rn come in pairs of opposite signs, then S is not invertible.

Proof. Let Pf be the X-ray transform in Rn (corresponding to the standard Radon
transform when n = 2) of a compactly supported continuous function f . The op-
erator obtained by evaluating Pf(θ, x) at finitely many directions {θ1, . . . , θm/2} ⊆
Sn−1 is not invertible (e.g. see [17, 19]). If the branches of a star transform S of
order 1 have the form

u1,−u1, u2,−u2, . . . , um/2,−um/2,

then there are finitely many directions θ1, . . . , θm/2, such that the X-ray transform
data restricted to those directions determine the star transform Sf . Therefore, an
inversion of S would reconstruct f from the values of Pf(s, θ) for finitely many
directions θ, which leads to a contradiction. Hence, such a star transform cannot
be invertible. □

In light of Lemma 5.2, non-invertible star transforms with symbol (e1, U) cor-
respond to 4 × 2 branch matrices U consisting of pairs of opposite sign rows. Up
to the right action of GL2(R), we can choose the rows of U , i.e., the set of branch
vectors, to be {(1, 0), (−1, 0), (0, 1), (0,−1)}, corresponding to the star transform
associated with the square of side length 2 in R2. Using the fact that we can also
permute the branch vectors, we obtain the three branch matrices

(10) U1 =


1 0
−1 0
0 1
0 −1

 , U2 =


1 0
0 1
−1 0
0 −1

 , U3 =


1 0
−1 0
0 −1
0 1

 .

whose images recover the 3 smooth lines.

We now generalize this example to higher dimension.

5.2. Fano varieties of elementary symmetric hypersurfaces. For n ≥ 2 and
m = 2n, if we consider non-invertible star transforms on Rn with polynomial sym-
bol p = e1(x1, . . . , xm), then their m × n branch matrices determine projective
(n− 1)-dimensional linear subspaces contained in the hypersurface Xm−1 ⊂ Pm−1

defined by p∗ = em−1(x1, . . . , xm) = 0. We are thus interested in the Fano scheme
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Fn−1(Xm−1), and the following gathers together what we can immediately say
about its geometry.

Proposition 5.3. Fix n ≥ 2 and m = 2n. Let Xm−1 ⊂ Pm−1 be the elemen-
tary symmetric hypersurface defined by em−1 = 0, and let Fn−1(Xm−1) be the
Fano scheme of projective (n − 1)-dimensional linear subspaces in Xm−1. Then
Fn−1(Xm−1) contains

(1) (m− 1)!! = m!/2nn! isolated closed points corresponding to linear spaces of
the form

x1 + xi1 = x2 + xi2 = ... = xn + xin = 0

determined by perfect matchings {1, i1, . . . , n, in} = {1, . . . ,m},

(2)
(
m
2

)
irreducible components isomorphic to the grassmannian G(n,m − 2),

each consisting of (n−1)-dimensional linear spaces contained in a projective
(m − 3)-dimensional linear subspaces defined by the vanishing of any two
of the coordinates.

Based in part on computational evidence using Magma for n = 2, 3, we conjec-
ture that Fn−1(Xm−1) has no other irreducible components. We remark that since
the isolated points correspond to linear spaces contained in the smooth locus of
Xm−1, they are smooth points of the Fano scheme, while the points in the grass-
mannian components are singular since they correspond to linear spaces meeting
the singular locus of Xm−1. Computational evidence for n = 2, 3 indicates that
each grassmannian component should have multiplicity four in the Fano scheme.

Another piece of motivation for the conjectured description of the isolated points
comes from the Radon transform perspective of the possible non-invertible star
transforms and their relation with standard Ray transform.

Theorem 5.4. Fix n ≥ 2 and m = 2n. Let Xm−1 ⊂ Pm−1 be the elementary sym-
metric hypersurface defined by em−1 = 0. Then all the (m− 1)!! isolated projective
(n − 1)-dimensional linear subspaces contained in Xm−1 correspond to realizable
non-invertible star transforms.

Proof. Let u1, . . . , un be a set of linearly independent vectors in Rn. We consider
the star transform S with the symbol (e1, U), where U is an m× n branch matrix
with rows u1,−u1, u2,−u2, . . . , un,−un. By Lemma 5.2, the star transform S is not
invertible. Therefore, by Theorem 5.1, this setup can be used to construct projective
(n − 1)-dimensional linear subspaces of Xm−1. In particular, we are interested in
the column spaces of all such matrices U , up to right multiplication by GLn(R).
Hence we can assume that our branch matrix has rows e1,−e1, . . . , en,−en. To
form branch matrices U with distinct ranges, one takes all permutations of these
m = 2n vectors up to the action of GLn(R). Therefore, the number of such matrices
is equal to the ratio of the number of permutations of these 2n branches and the
size of the orbit induced by the action of GLn(R). The problem of calculating
the latter is equivalent to counting the number of invertible linear transformations
that map each ei to ej or −ej for some j. It is easy to check that there are 2nn!
invertible transformations of that form. This proves that the number of distinct
nontrivial linear subspaces of Xm−1 spanned by the columns of branch matrices of
non-invertible star transforms is given by (m− 1)!! = (m)!/(2nn!). □

We remark that, as in the case of the Cayley nodal cubic surface X3, the grass-
mannian components of the Fano scheme Fn−1(Xm−1) correspond to degenerate
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non-invertible star transforms with two zero rows. We remark that if exactly one
row of the branch matrix is zero, then the column space cannot be contained in
Xm−1.

We return to our conjectured description of the isolated points of the Fano
scheme. Let U be an m× n matrix of rank n, whose column space is contained in
Xm−1, and assume that all rows of U are non-zero. We can form the star transform
S = e1(Xu1, . . . ,Xum), and the non-invertibility of S suggests (if we believe the
converse of Lemma 5.2) that the branch vectors u1, . . . , um should come in pairs
with opposite signs; however, we have already accounted for all such star transforms
in Theorem 5.4. If the branch vectors don’t come in opposite sign pairs then the
geometric structure of the star (existence of a “broken line”) suggests that such
transformation is invertible.

We wonder, for a general star transform on Rn of order d with m branch vectors,
whether smooth real points of the Fano scheme Fn−1(X), of projective (n − 1)-
dimensional linear spaces in the hypersurfaceX ⊂ Pm−1 defined by the dual symbol,
correspond to realizable non-invertible star transforms, and whether singular points
of the Fano scheme correspond to degenerate star transforms.

6. Remarks on the domain and range of star transform

In this section, we discuss an alternative to restricting attention to realizable star
transforms by considering S as a transformation acting on functions on a bounded
convex region Ω ⊂ Rn rather than Rn itself.

Any formal star transform S of order 1 on Rn naturally defines an integral
transform S : C∞

c (Rn) → C∞(Rn). However, for formal star transforms S of higher
order, the integrals defining Sf may be divergent on a set of positive measure. Let
us illustrate this via examples. First, it is clear that an expression of the form
XuX−uf(x) diverges to infinity for a point x in the support of a non-zero function
f ∈ C∞

c (Rn). A less trivial problematic situation can be constructed by considering
three branch vectors u1, u2, u3 ∈ Rn such that c1u1 + c2u2 + c3u3 = 0 for some
positive coefficients cj . The expression Xu2

Xu1
f(x) is a (weighted) integral of f

on this positive cone starting from vertex x. Now, it is not hard to see that since
−u3 is in the positive cone spanned by u1 and u2 the expression Xu3Xu2Xu1f(x)
produces infinity for x in the support of f . To remedy this issue one can introduce
various geometric conditions on the set of branch vectors defining a star transform.
Instead of using such geometric constraints, we employ an alternative solution by
restricting our consideration to a bounded open domain Ω ⊂ Rn.

Let Ω be a convex bounded open region in Rn. We provide two alternative
realization of an arbitrary formal star transform S as a transformation acting on
functions. (I) S defines a transformation from C∞

c (Ω) to C∞(Ω). (II) S defines a
linear operator from C∞(Ω̄) to itself, where Ω̄ is the closure of Ω.

Define

(11) (Xuf)(x) :=

0∫
T

f(x+ tu) dt, T = sup{t ∈ R : x− tu ∈ Ω}.

Then, for a general symbol (p, U), the star transform S is a well-defined operator
S : C∞

c (Ω) → C∞(Ω). On the other hand, it is also clear from formula (11) that a
star transform defines an operator from C∞(Ω̄) to itself.
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While the above definition guarantees convergence of the integrals in the star
transform, it also has a drawback. Recall that for any compactly supported function
f ∈ C∞

c (Rn), the fundamental theorem of calculus yields that XuDuf = DuXuf =
f . While we still have DuXuf = f , unfortunately XuDuf = f no longer gener-
ally holds for f ∈ C∞(Ω̄). Despite this limitation, one can still prove interesting
statements about the star transform.

In the remaining part of this section, we describe the extension of a star transform
to an operator from C∞(Ω̄) to itself. Let DO be the set of all differential operators
with constant coefficients. We denote by C∞

∗ (Ω) the space of all function f ∈
C∞(Ω) such that T f ∈ C∞

c (Ω) for some non-zero differential operator T in DO.
Note that C∞

c (Ω) ⊂ C∞
∗ (Ω) ⊂ C∞(Ω).

Proposition 6.1. Let Ω be a bounded convex open region in Rn then
(1) For 0 ̸= u ∈ Rn. If f ∈ C∞

∗ (Ω) then Xuf ∈ C∞
∗ (Ω).

(2) The set C∞
∗ (Ω) is a linear subspace of C∞(Ω).

(3) C∞
∗ (Ω) contains all polynomials

(4) C∞
∗ (Ω) is dense in C∞(Ω̄)

Proof. Part (1). Assuming f ∈ C∞
∗ (Ω) there is a differential operator T ∈ P such

that Tf ∈ C∞
c (Ω). Define T ′ = TDu ∈ P, then T ′Xuf = TDuXuf = Tf . Hence,

Xuf ∈ C∞
∗ (Ω). Part (2). Let f1, f2 ∈ C∞

∗ (Ω) and let Ti ∈ P with Tifi ∈ C∞
c (Ω).

Then (T1T2)(f1 + f2) is a sum of compactly supported functions hence af1 + f2 ∈
C∞

∗ (Ω). Part (3). For an arbitrary polynomial p one can find a differential operator
T such that T p = 0 and hence p ∈ C∞

∗ (Ω). Part (4) follows from the statement
that polynomials are dense in C∞(Ω̄). □

Proposition 6.1 shows that a formal star transform defines an operator from
C∞

∗ (Ω) to C∞
∗ (Ω), which naturally extends to an operator from C∞(Ω̄) to C∞(Ω̄).

7. The star transform in tomography

A known application of the star transform is the imaging of a heterogeneous
medium using single-scattered radiation [2, 23]. Let p and q be some points outside
the imaged body. A source of radiation located at point p emits a beam of particles
into the body along the direction of ui. A receiver placed at point q collimated along
the direction uj measures the intensity of scattered radiation. Ignoring particles
that scatter more than once, the pair (p, q) uniquely identifies the scattering location
x inside the body. With some simplifying assumptions, the measured data ϕij(x)
can then be expressed as

(12) ϕij(x) = Xif(x) + kijXjf(x) + η(x),

where f(x) and η(x) represent correspondingly the attenuation and scattering co-
efficients at x, and kij is a known constant. Using arrays of emitters and receivers
with different collimation directions (u1, . . . , um), one can simultaneously recon-
struct both the attenuation and scattering coefficients. The idea is to use multiple
measurements ϕij(x) associated with the same scattering location x to eliminate
η(x) and recover f(x) by inverting the corresponding star transform. Then, using
the reconstructed f(x) one can easily calculate η(x). For example, in a setup with
three fixed radiation directions u1, u2, u3 the expression

ϕ12(x)− ϕ23(x) = X1f(x) + (k12 − 1)X2f(x) + k23X3f(x)
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provides the star transform Sf(x), which can be inverted to recover f(x), followed
by the reconstruction of η(x).

8. Additional remarks

Localization perspective. TheWeyl algebraAn is the ring generated by the mul-
tiplication operators x1, . . . , xn and differential operators ∂/∂x1, . . . , ∂/∂xn satisfy-
ing the commutation relations [xi, xj ] = 0, [∂/∂xi, ∂/∂xj ] = 0 and [∂/∂xi, xj ] = δij .
The localization of An, often denoted by Dn, has been studied extensively in the
literature. The ring of differential operators with constant coefficients corresponds
to a multiplicative subset S in An and hence we can form a localization D′

n of
An relative to S. Star transforms provide a representation of elements of D′

n as
operators acting on smooth functions.

Tensor field generalization. Generalizations of the star transform of order 1
from scalar functions to vector and tensor fields in R2 have been studied in [5,
6, 7, 8]. In upcoming projects, we will consider a generalization of the results in
this paper to the case of the star transform on vector-valued, matrix-valued or
tensor-valued fields.

Left null space of the branch matrix. The rows of any branch matrix U are
non-zero vectors in Rn. This ensures that the operator Xui

is well-defined for
each row ui of U . The m × n matrix U , with m > n, has multiple geometric
interpretations, including the Grassmannian interpretation where U is associated
with its column space, an n-dimensional linear subspace of Rm. The non-zero
condition on the rows can be interpreted as the existence of a certain family of
polygons associated with the left null space of U . For instance, in the case of m = 4
and n = 3, if α ∈ Null(UT ) ⊂ R4, then we have a closed path in R3 defined by
vertices p0, . . . , p4, where p0 is an arbitrary starting point and p4 = p0+

∑n
j=1 αjuj .

The closedness of path follows from α ∈ Null(UT ), and any such α corresponds to
a (free) tetrahedron in three dimensions. We will not pursue this geometric view
in this paper but this has been used in [4] (see Theorem 6 and Lemma 5).

Discrete Laplacian. The new formulas obtained in this paper for powers of the
Laplace operator in Rn (see formula (5) and Table 1) may be of independent interest.
For example, various discretized interpretations of such representations can lead to
derivation of new formulas (stencils) for discrete Laplacians. The authors plan to
investigate these questions in future research.

Work of Alexandru Chirvasitu. During the spring of 2024, Mohammad Javad
Latifi Jebelli visited The University at Buffalo and discussed the idea of the star
transform with his host, Alexandru Chirvasitu. Going over results of this paper,
Alexandru Chirvasitu found the work interesting and later provided some feedback.
As we were preparing this manuscript for publication, Chirvasitu notified us that
he had resolved some of the questions raised in this paper, including the conjectural
description of the real points on the Fano scheme of Xm−1 at the end of Section 5,
together with an answer to the question raised at the end of section 4 using orbit
Chern classes (see [10]).
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