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Abstract. We construct curves carrying certain special linear series and not others, showing many
non-containments between Brill�Noether loci in the moduli space of curves. In particular, we prove
the Maximal Brill�Noether Loci conjecture in full generality.

Introduction

Whereas classical Brill�Noether theory studies linear systems on general algebraic curves, re�ned
Brill�Noether theory aims to characterize linear systems on special curves. A degree d linear system
of dimension r, called a grd, corresponds to a non-degenerate morphism C → Pr of degree d when it
is base point free. The Brill�Noether�Petri theorem [19, 22, 30] states that a general smooth curve
C of genus g admits a grd if and only if the Brill�Noether number

ρ(g, r, d) = g − (r + 1)(g − d+ r)

is non-negative. The last few years have seen a �urry of results concerning re�ned Brill�Noether
theory of curves in a �xed Brill�Noether locus

Mr
g,d = {C ∈ Mg : C admits a grd}

when ρ(g, r, d) < 0. In particular, major advances in re�ned Brill�Noether theory for curves of �xed
gonality, i.e., when r = 1, have been made in [11, 25, 28, 29, 39].

Part of a re�ned Brill�Noether theory concerns the question of whether a �general� curve with
a grd carries another gr

′
d′ , which can be reinterpreted in terms of containments of Brill�Noether loci.

For example, Cli�ord's theorem implies that Mr
g,2r ⊂ M1

g,2 for every r ≥ 1. By adding base
points and subtracting non-base points, one obtains the trivial containments Mr

g,d ⊂ Mr
g,d+1 and

Mr
g,d ⊂ Mr−1

g,d−1 between Brill�Noether loci. The expected maximal Brill�Noether loci are those
that do not admit further trivial containments, see De�nition 1.1 for the precise de�nition.

The interaction between various Brill�Noether loci is useful in the study of the birational geometry
of Mg, see [17, 24]. When ρ = −1, the Brill�Noether loci are irreducible divisors, which have been
studied by Harris, Mumford, Eisenbud, and Farkas [14, 15, 17, 18, 24]. A crucial ingredient in the
study of the Kodaira dimension of M23 was the maximality of the Brill�Noether divisors.

Inspired by the lifting of line bundles on curves on K3 surfaces, the Donagi�Morrison conjecture,
building on work of Farkas and Lelli-Chiesa [17, 18, 31], and classical results in Brill�Noether theory,
the �rst two authors [2] formulated a conjecture stating that the expected maximal Brill�Noether
loci are exactly the maximal ones with respect to containment, except precisely in genus g = 7, 8, 9,
where there are exceptional cases, see Conjecture 1.2, and for details on the exceptional genera see
Example 1.3 below. In other words, given any two expected maximal Brill�Noether loci Mr

g,d and

Mr′
g,d′ , there is a curve C ∈ Mg admitting a grd but not a gr

′
d′ . An appealing aspect of the conjecture

is a numerical characterization of the maximal elements of the Brill�Noether strati�cation of Mg.
There has been recent progress on this conjecture, referred to as the Maximal Brill�Noether Loci
conjecture, in work of many authors [3, 6, 7, 9, 10, 31, 44], which together show the conjecture holds
in genus g ≤ 23 and for in�nitely many values of g.

In this paper, we settle the conjecture in the a�rmative. In fact, we prove something stronger.

Theorem 1. In every genus g ≥ 3, with g ̸= 7, 8, 9, the expected maximal Brill�Noether loci Mr
g,d

are all distinct and are the Brill�Noether loci that are maximal with respect to containment. More
precisely, Mr

g,d has a component on which the general curve does not admit any gr
′

d′ with d′ ≤ g− 1,

ρ(g, r′, d′) < 0, and (r′, d′) ̸= (r, d), unless (g, r, d) = (7, 2, 6), (8, 1, 4), (9, 2, 7).
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We note that this theorem is stronger than the Maximal Brill�Noether Loci conjecture, as it shows
the existence of a component in each expected maximal Mr

g,d demonstrating all non-containments.
The curves in Theorem 1 behave as generally as possible for curves admitting a grd. Capturing

this idea, we say that a curve C ∈ Mr
g,d is g

r
d-general if any additional Brill�Noether special divisors

on C are those determined by Serre duality or by the trivial containments of Brill�Noether loci,
see De�nition 1.4. We are naturally led to the following question generalizing the Maximal Brill�
Noether Loci conjecture.

Question 1. Does Mr
g,d contain a grd-general curve?

Theorem 1 gives a positive answer for all expected maximal Brill�Noether loci, unless g = 7, 8, 9.
Our more general results, see Theorems 2.5 and 5.1, can be used to address additional cases.
Previously, special cases of Question 1 have been investigated, see [18]. For r = 1, the re�ned
Brill�Noether theory for curves of �xed gonality answers this question, see e.g., [2, Proposition 1.6].
Classically, the genus-degree formula for plane curves gives many examples where M2

g,d does not

contain g2d-general curves. More generally, if C can be embedded as a degree d curve in Pr and

admits a k-secant l-plane, then C also carries a gr−l−1
d−k , which, if Brill�Noether special, shows that

C is not grd-general. Thus Theorem 1 shows that curves in maximal Brill�Noether loci do not admit
unexpected secants, cf. [2, Remark 6.5].

Corollary 1. In every genus g ≥ 3, with g ̸= 7, 8, 9, each expected maximal Brill�Noether locus
Mr

g,d with r ≥ 3 has a component for which a general curve can be embedded as a degree d curve in

Pr that does not admit any k-secant l-plane with k − (k − l − 1)(r − l) < 0.

The main achievement of this paper is to construct smooth curves of genus g carrying a special
grd and no gr

′
d′ under certain numerical conditions on the integers g, r, d, r′, d′. Our main result is

Theorem 5.1 stating that we can construct such curves on K3 surfaces with the grd being induced
by a line bundle on the surface. These K3 surfaces live in a divisor Kr

g,d in the moduli space Kg of
quasi-polarized K3 surface of genus g, see �1.2. Despite the apparent complexity of the numerical
conditions in Theorem 5.1, it provides a very e�cient tool to prove non-containments of Brill�
Noether loci in a large number of new cases, in particular, allowing us to deduce Theorem 1. This
proof, while inspired by the program initiated in [2], does not rely on any of the special cases of
the Maximal Brill�Noether Loci conjecture treated in the literature so far, and in particular, shows
that curves on K3 surfaces su�ce to distinguish the maximal Brill�Noether loci.

We brie�y explain the main ideas behind the proof of Theorem 5.1. In his famous proof of the
Brill�Noether�Petri theorem in [30], Lazarsfeld showed that a Brill�Noether special curve on a K3
surface degenerates to a reducible curve, due to the non-simplicity of the associated Lazarsfeld�
Mukai bundle. For many (g, r, d), we prove, in Proposition 3.4, that for the very general element
(S,H) ∈ Kg

r,d, smooth curves C ∈ |H| degenerate to a reducible curve C1∪C2 in an essentially unique
way, a property we call decomposition rigidity, cf. De�nition 2.3. We prove that along this unique
degeneration, the limit of any Brill�Noether special divisor on C is highly constrained, allowing us
to rule out the existence of additional Brill�Noether special divisors. More precisely, the genera
of the components C1 and C2 are r and g + r − d − 1, respectively, and any Brill�Noether special
divisor gr

′
d′ on C has �limits� gr1d1 and gr2d2 that are Brill�Noether general on the two components,

see Theorem 2.5. This imposes numerical restrictions on ri and di, and thus on g, r, d, r′, d′. In
fact, we show that we can recover a gr

′
d′ on C if the numerical constraints are satis�ed, so that

Theorem 2.5 gives necessary and su�cient conditions for the existence of a gr
′

d′ on a curve in |C|.
In particular, this can be interpreted as a �regeneration theorem� for Brill�Noether special linear
systems on curves on K3 surfaces.

Outline. In �1, we recall the de�nitions of expected maximal Brill�Noether loci, the history of
progress on distinguishing Brill�Noether loci, as well as background on K3 surfaces and Lazarsfeld�
Mukai bundles. In �2, we introduce the notion of decomposition rigidity, and then prove our main
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technical result, Theorem 2.5, in which we study the limiting behavior of Brill�Noether special
divisors on curves on K3 surfaces satisfying decomposition rigidity. In �3, we give su�cient condi-
tions for K3 surfaces in Kr

g,d to satisfy decomposition rigidity, which hold for those associated to
expected maximal Brill�Noether loci. In �4, we study the numerical conditions forced on limits
of Brill�Noether special divisors. Finally, in �5, we prove our main result, Theorem 5.1, and de-
duce Theorem 1. We conclude �5 with additional new applications of Theorem 5.1 to non-maximal
Brill�Noether loci.
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1. Background on Brill�Noether loci and K3 surfaces

1.1. Brill�Noether loci. Surprisingly little is known about the geometry of Brill�Noether loci
in general. The expected codimension of Mr

g,d in Mg is −ρ(g, r, d), and it is known that the

codimension of any component of Mr
g,d is at most −ρ(g, r, d). More is known about the existence of

components of expected dimension, see for example [7, 27, 40, 42, 44]. However, equidimensionality
of components is only known when −3 ≤ ρ(g, r, d) ≤ −1 (additionally assuming g ≥ 12 when
ρ(g, r, d) = −3) [13, 43]. Complicating the picture, components of larger than expected dimension
can exist, examples include Castelnuovo curves, see for example [40, Remark 1.4]. As mentioned,
irreducibility is known for all Brill�Noether loci with ρ = −1 by [14] as well as all M2

g,d with ρ = −2

by [9].
There are various containments known among Brill�Noether loci. For example, Cli�ord's theorem

implies that Mr
g,2r ⊂ M1

g,2. There are trivial containments Mr
g,d ⊆ Mr

g,d+1 obtained by adding a

basepoint to a grd on C; and Mr
g,d ⊆ Mr−1

g,d−1 when r ≥ 2 obtained by subtracting a non-basepoint,

cf. [17, 32]. Modulo these trivial containments, the �rst two authors de�ned in [2] the expected
maximal Brill�Noether loci as follows.

De�nition 1.1. A Brill�Noether locus Mr
g,d is said to be expected maximal if 2 ≤ d ≤ g − 1,

ρ(g, r, d) < 0, ρ(g, r, d+ 1) ≥ 0, and ρ(g, r − 1, d− 1) ≥ 0 if r ≥ 2.

We will say that a triple (g, r, d) is associated to an expected maximal Brill�Noether locus if Mr
g,d

is expected maximal.

We remark that, after accounting for Serre duality which gives Mr
g,d = Mg−d+r−1

g,2g−2−d, every Brill�
Noether locus is contained in at least one expected maximal Brill�Noether locus.

The �rst two authors then posed a conjecture identifying the maximal Brill�Noether loci.

Conjecture 1.2 ([2, Conjecture 1]). In every genus g ≥ 3, the maximal Brill�Noether loci are the
expected maximal loci, except when g = 7, 8, 9.

In other words, the expected maximal Brill�Noether loci should be maximal with respect to
containment, except when g = 7, 8, 9. In particular, being maximal with respect to containment
asks that for every pair of expected maximal Brill�Noether loci Mr

g,d and Mr′
g,d′ , there exists a

curve C ∈ Mr
g,d such that C /∈ Mr′

g,d′ . A priori, the curve C could depend on the pair of expected
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maximal Brill�Noether loci. However, Theorem 1 shows the existence of a component whose general
member demonstrates all of the non-containments.

We recall the details of the exceptional cases.

Example 1.3 (Unexpected containments of expected maximal Brill�Noether loci, cf. [2, Props.
6.2-4]). We have M2

7,6 ⊂ M1
7,4, M1

8,4 ⊂ M2
8,7 and M2

9,7 ⊂ M1
9,5, and these containments are strict.

The containment M2
7,6 ⊂ M1

7,4 follows from the fact that a g26 on a smooth curve of genus 7

cannot be very ample by the genus formula for plane curves, whence the curve must have a g14. The
containment M2

9,7 ⊂ M1
9,5 follows for the same reason. (These were pointed out by H. Larson.)

The containment M1
8,4 ⊂ M2

8,7 was proven in [34, Lemma 3.8]. Let C be a smooth curve with a

g14. Its Serre adjoint is a g410. If it is not very ample, C will have a g38, whose Serre adjoint is a g26,
whence C carries a g27. If the g410 is very ample, it embeds C into P4 as a curve of degree 10, where
it has 8 trisecant lines by the Berzolari formula. Hence C has a g27.

Prior to the formulation of Conjecture 1.2 various non-containments between Brill�Noether
loci were known. For example, generalizing work of Eisenbud�Harris [15] and Farkas [17] in
genus 23, Choi, Kim, and Kim [8, 10, 9] showed that Brill�Noether loci with ρ = −1,−2 in
every genus have distinct support. Already, this is su�cient to prove Conjecture 1.2 for any
genus g such that g + 1 or g + 2 is of the form lcm(1, 2, . . . , n) for some n ≥ 3, the �rst few
being g = 4, 5, 10, 11, 58, 59, 418, 419, 838, 839, 2518, 2519, . . . . Choi and Kim [9] showed that Brill�
Noether loci with ρ = −2 are never contained in each other nor in certain other Brill�Noether
divisors. Lelli-Chiesa [31] and the �rst two authors [2] also showed various non-containments via
the lifting of line bundles on curves on K3 surfaces. As conjectured by P�ueger [39] and proved
by Jensen�Ranganathan [25] and Cook-Powell�Jensen [11], the combinatorial formula for the ex-
pected dimension of Hurwitz�Brill�Noether loci implies that the expected maximal Brill�Noether
loci with r = 1 are not contained in any other expected maximal loci, except when g = 8, see [2,
Proposition 1.6]. This result is now part of the full Brill�Noether theory for curves of �xed gonality,
established by Larson, Larson, and Vogt [28, 29]. More recently, the gonality strati�cation of Mg

(work of Larson and the �rst two authors [3]), strata of di�erentials (work of Bud [6]), and limit
linear series (work of Teixidor i Bigas [44] and Bud and the second author [7]) were also used to
show new non-containments between Brill�Noether loci, which all together was su�cient to prove
Conjecture 1.2 for g ≤ 23.

The idea of Conjecture 1.2 is that curves in expected maximal Brill�Noether loci should behave
as generally as possible, given that they carry a special linear system. More generally, we are
interested in Brill�Noether special curves that admit no further Brill�Noether special divisors, of
course allowing those forced by trivial containments of Brill�Noether loci and Serre duality.

De�nition 1.4. We say a curve C ∈ Mr
g,d is grd-general if the only Brill�Noether special divisors

gr
′

d′ with r′ ≥ 1 and d′ ≤ g − 1 on C are of the form (r′, d′) = (r − i, d − i) for 0 ≤ i ≤ r − 1 or
(r′, d′) = (r, d+ j) for 0 ≤ j ≤ g − 1− d.

In this language, Theorem 1 says that every expected maximal Brill�Noether locus Mr
g,d contains

a grd-general curve, unless (g, r, d) = (7, 2, 6), (8, 1, 4), (9, 2, 7). This leads naturally to Question 1,
describing when other Brill�Noether loci contain a grd-general curve. We note that containing a grd-
general curve is an open condition in Mr

g,d. Various non-trivial containments of Brill�Noether loci
give examples of Mr

g,d not containing grd-general curves. The genus-degree formula for plane curves

gives containments of the form M2
g,d ⊆ M1

g,d−2, giving many examples of M2
g,d not containing

g2d-general curves. Generalizing this, the existence of a k-secant l-plane to the image of a curve

under a grd gives a gr−l−1
d−k , which, if Brill�Noether special, gives further examples of curves that are

not grd-general. The exceptional cases in Example 1.3 to Conjecture 1.2 are exactly of this form.
The re�ned Brill�Noether theory for curves of �xed gonality provides a complete answer to

Question 1 for r = 1. As proved in [25], the general smooth projective k-gonal curve C of genus g
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admits a grd if and only if P�ueger's Brill�Noether number

ρk(g, r, d) := ρ(g, r, d) + max
0≤ℓ≤min{r, g−d+r+1}

(g − k − d+ 2r + 1)ℓ− ℓ2

is non-negative. Hence M1
g,k contains a g1k-general curve if and only if ρk(g, r, d) < 0 for all (g, r, d)

associated to expected maximal Brill�Noether loci with r ≥ 2.

Example 1.5. The expected maximal locus M1
g,k has k =

⌊
g+1
2

⌋
, and contains a g1k-general curve

unless g = 8, as shown in [2, Proposition 1.6]. For sub-maximal gonality strata, the situation

becomes more complicated. For example, if k =
⌊
g−1
2

⌋
≥ 2, then one can verify that M1

g,k contains

a g1k-general curve unless g = 6, 7, 8, 10, 11, 14.

We recall the numerical classi�cation of expected maximal Brill�Noether loci from [3].

Lemma 1.6 ([3, Lemma 1.1]). An expected maximal Brill�Noether locus Mr
g,d exists for some d if

and only if

(1) 1 ≤ r ≤

{⌊√
g
⌋

if g ≥
⌊√

g
⌋2

+
⌊√

g
⌋⌊√

g
⌋
− 1 if g <

⌊√
g
⌋2

+
⌊√

g
⌋
.

Once a rank r satisfying the conditions of Lemma 1.6 is �xed, the unique degree d that makes
Mr

g,d expected maximal is the largest d such that ρ(g, r, d) < 0, namely

(2) d = dmax(g, r) := r +

⌈
gr

r + 1

⌉
− 1.

In other words, Lemma 1.6 says that the expected maximal Brill�Noether loci inMg are precisely
the Mr

g,d for r satisfying (1) and d = dmax(g, r).

We remark for later use that an immediate consequence of (1) is the inequality

(3) g ≥ r2 + r

for (g, r, d) associated to an expected maximal Brill�Noether locus, which can also directly be
deduced from the facts that d ≤ g − 1 and ρ(g, r, d+ 1) ≥ 0.

1.2. K3 surfaces. We will work with quasi-polarized K3 surfaces of genus g, that is, with pairs
(S,H) where S is a K3 surface and H ∈ Pic(S) is a primitive big and nef line bundle such that
H2 = 2g − 2, so that all smooth irreducible curves in |H| have genus g. To distinguish Brill�
Noether loci, we want such curves to carry a grd, which we ensure by specifying the Picard group. In
the moduli space Kg of primitively quasi-polarized K3 surfaces of genus g, the Noether�Lefschetz
locus consists of K3 surfaces with Picard rank > 1. Via Hodge theory, the Noether�Lefschetz
locus is a union of countably many irreducible Noether�Lefschetz divisors. For g ≥ 2, r ≥ 0, and
d ≥ 0, we denote by Kr

g,d the Noether�Lefschetz divisor parameterizing quasi-polarized K3 surfaces

(S,H) ∈ Kg such that the lattice Λr
g,d = Z[H]⊕ Z[L] with intersection matrix

(4)

[
H2 H · L
L ·H L2

]
=

[
2g − 2 d

d 2r − 2

]
admits a primitive embedding in Pic(S) preserving H (using the notation from [2, 23]).

It is well known that Kr
g,d is non-empty if and only if the discriminant

(5) ∆r
g,d := 4(g − 1)(r − 1)− d2 < 0.

Indeed, the Hodge index theorem implies ∆r
g,d < 0 for any (S,H) ∈ Kr

g,d. Surjectivity of the period

map (see [33, Thm. 2.9(i)] or [36]) shows there exists a K3 surface S with Pic(S) = Λr
g,d. Acting with

Picard�Lefschetz re�ections on Λr
g,d, and using [4, VIII, Prop. 3.9], we may assume that H is nef.

In particular, for (g, r, d) satisfying (5), Kr
g,d is non-empty and the very general (S,H) ∈ Kr

g,d has
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Pic(S) = Λr
g,d. We note that when Kr

g,d is non-empty, it is an irreducible divisor of Kg, see [37]. We

remark that the Kr
g,d with ρ(g, r, d) < 0 are precisely the Noether�Lefschetz divisors parameterizing

the Brill�Noether special primitively polarized K3 surfaces in the sense of Mukai [35], see [21, 23].
Up to Serre duality, we can assume that (g, r, d) associated to a Brill�Noether locus satis�es

d ≤ g − 1. Hence, for distinguishing Brill�Noether loci, we will focus on K3 surfaces in Kr
g,d

satisfying

(6) g ≥ 3, r ≥ 1, 2 ≤ d ≤ g − 1.

We are interested in Kr
g,d because curves in |H| carry a grd. We make this more precise as follows

(cf. [2, Lemma 1.1].

Lemma 1.7. Let (S,H) ∈ Kr
g,d and assume that (6) holds. Then any irreducible C ∈ |H| has genus

g and carries a grd, and |OC(L)| is a grd if and only if h1(L) = h1(H − L) = 0.
Furthermore, if Pic(S) ≃ Λr

g,d, then |H| contains smooth irreducible curves and |OC(L)| is a base

point free grd for any smooth irreducible C ∈ |H|.

Proof. We note that L2 ≥ 0, (H − L)2 = 2(g − d − 2 + r) ≥ 2(r − 1) ≥ 0, L · H = d > 0 and
(H −L) ·H = 2(g − 1)− d ≥ g − 1 ≥ 2, whence by Riemann-Roch and Serre duality, L and H −L
are both e�ective and nontrivial. In particular, h0(L −H) = 0 and dim |L| = 1

2L
2 + 1 + h1(L) =

r + h1(L) ≥ r. The �rst assertion in the lemma then follows by adjunction and the sequence

0 // OS(L−H) // OS(L) // OC(L) // 0.

By classical results [41, Cor. 3.2, � 2.7], a line bundle M on a K3 surface is globally generated
if and only if there exists no curve Γ such that Γ2 = −2 and Γ.M < 0 or Γ2 = 0 and Γ ·M = 1.
Hence, if Pic(S) ≃ Λr

g,d one may explicitly check, arguing as in e.g. [26], that L and H − L are
globally generated, except in one case: g = 4r−2, d = g−1 = 4r−3 and H ∼ 2D+Γ, with D ∼ L
or D ∼ H − L globally generated and Γ a (−2)-curve such that D · Γ = 1; in this case, Γ is the
base divisor of |H −D|. (We leave the details to the reader, since we will not make use of the last
assertion in the lemma in this work.) Since Γ ·H = 0, we see that OC(L) ≃ OC(H − L) ≃ OC(D)
for any C ∈ |H|. Thus, in all cases, OC(L) is base point free.

Since L and H − L are part of a basis of Pic(S), they cannot be a multiple of an elliptic curve.
Therefore, again by classical results [41, Prop. 2.6], L and H − L are represented by an irreducible
curve whenever they are globally generated, giving the vanishings h1(L) = h1(H − L) = 0. In the
one remaining case, they have the form D + Γ with D represented by an irreducible curve and Γ
an irreducible curve intersecting D in one point. Hence, h1(D + Γ) = 0 in this case as well, due
to 1-connectedness. A similar reasoning shows that H is globally generated and represented by an
irreducible curve. Hence, by Bertini and the �rst part of the lemma, there are smooth irreducible
curves C ∈ |H|, and |OC(L)| is a grd. □

In the notation of [1, 23], let π : Pg → Kg be the universal smooth hyperplane section, whose �ber
above (S,H) is the set of smooth irreducible curves in |H|, and let ϕ : Pg → Mg be the forgetful
map. Also denote by π : Pr

g,d → Kr
g,d the restriction to the divisor Kr

g,d ⊂ Kg. By Lemma 1.7, the
image of ϕ restricted to Pr

g,d lies in Mr
g,d. We summarize this in the following diagram.

Pr
g,d ϕ

&&
π
yy

Kr
g,d Mr

g,d

Our proof of Theorem 1 will show that when restricted to a general element of Kr
g,d, the image

of ϕ consists of grd-general curves.
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1.3. Bundles on K3 surfaces. Let S be a K3 surface and C ⊂ S a smooth irreducible curve of
genus g. A base point free grd on C gives rise to a Lazarsfeld�Mukai bundle on S. Denoting by
(L , V ) the grd, where L is a line bundle of degree d on C and V ⊂ H0(L ) is an (r+1)-dimensional
subspace, the Lazarsfeld�Mukai bundle EC,(L ,V ) is de�ned as the dual of the kernel of the evaluation
map V ⊗ OS ↠ L . We will use the following well-known facts about EC,(L ,V ), cf. [30].

• rk(EC,(L ,V )) = r + 1, c1(EC,(L ,V )) = [C], c2(EC,(L ,V )) = d;

• h2(EC,(L ,V )) = 0;
• EC,(L ,V ) is globally generated o� a �nite set;
• χ(E∨

C,(L ,V ) ⊗ EC,(L ,V )) = 2(1 − ρ(g, r, d)). In particular, if ρ(g, r, d) < 0, then EC,(L ,V ) is

non-simple.

We conclude with a technical lemma which will be useful.

Lemma 1.8. Let E be a torsion free coherent sheaf on a K3 surface S that is globally generated o�
a �nite set such that H2(E ) = 0 and c1(E ) = E, where E is a smooth elliptic curve. Then rkE = 1
and E ∨∨ ≃ OS(E).

Proof. The cokernel of the canonical inclusion E ⊂ E ∨∨ is supported on a �nite set, whence
H2(E ∨∨) = 0 and E ∨∨ is globally generated o� a �nite set. If rkE = 1, there is nothing to
show. If rkE ≥ 2, a general subspace W ⊂ H0(E ∨∨) of dimW = rkE ∨∨ − 1 gives rise to an
evaluation sequence

(7) 0 // W ⊗ OS
// E ∨∨ // OS(E)⊗ IZ

// 0,

where Z is a 0-dimensional subscheme of S of length c2(E ∨∨). Since E ∨∨ is globally generated o�
a �nite set we must have h0(OS(E)⊗IZ) ≥ 2, whence Z = ∅. As OS(E) is globally generated, (7)
shows that E ∨∨ is also. Hence, by a general position argument, for a general subspace V ⊂ H0(E ∨∨)
of dimV = rkE ∨∨ the evaluation map V ⊗ OS → E ∨∨ drops rank along a smooth member of |E|,
which we still denote by E, and we have a short exact sequence

(8) 0 // V ⊗ OS
// E ∨∨ // A // 0,

with A a line bundle on E. Dualizing, we obtain

(9) 0 // E ∨∨∨ ≃ E ∨ // V ∨ ⊗ OS
// ωE ⊗ A ∨ ≃ A ∨ // 0.

The sequences (8) and (9) show that both A and A ∨ are globally generated, whence A ≃ OE . Since
h0(E ∨) = h2(E ∨∨) = 0, we get from (9) that rkE ∨∨ = dimV ≤ h0(OE) = 1, a contradiction. □

2. Brill�Noether special curves on K3 surfaces

The aim of this section is to give a necessary and su�cient criterion to determine whether a curve
on a K3 surface with a special linear series induced by a line bundle on the surface can contain
other special linear series as well. The main result is summarized in Theorem 2.5 below.

A crucial observation of Lazarsfeld [30, Lemma 1.3] is that a Brill�Noether special curve C on a
K3 surface S admits in its complete linear system |C| a reducible curve. More precisely, as will also
be clear from the proof of Theorem 2.5, one has an e�ective decomposition

(10) C ∼ A+B + T,

with A and B globally generated and nontrivial, and T e�ective (and possibly zero). Control
over the (self-)intersection numbers of components of this e�ective decomposition have been crucial
technical inputs into a host of results concerning lifting linear systems to line bundles on K3 surfaces
and distinguishing Brill�Noether loci, see [2, 5, 12, 31].

For our purposes, the following will be a convenient de�nition restricting e�ective decompositions
of H.
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De�nition 2.1. Let H be a divisor on a K3 surface S. We say that H = A + B is a �exible
decomposition if h0(A) ≥ 2, h0(B) ≥ 2, A2 ≥ −2, B2 ≥ −2, and at least one of A and B has
self-intersection ≥ 0.

Note that on K3 surfaces containing no (−2)-curves the �exible decompositions are nothing but
the e�ective, nontrivial decompositions.

Example 2.2. For K3 surfaces (S,H) ∈ Kr
g,d satisfying (6) we have that H ∼ L + (H − L) is a

�exible decomposition. Indeed, since (H−L)2 = 2(g+r−d−2) ≥ 0 and (H−L)·H = 2g−2−d > 0,
we get by Riemann�Roch that h0(H − L) ≥ 2. Similarly for L.

We will henceforth be interested in the uniqueness of �exible decompositions. The following is a
weakening of the condition that |H| contains no reducible curves from [30, Theorem].

De�nition 2.3. For a K3 surface S and a divisor H, we say that (S,H) satis�es decomposition
rigidity if H admits at most one �exible decomposition.

We will show in Proposition 3.4 that decomposition rigidity is satis�ed for general members
(S,H) ∈ Kr

g,d for many (g, r, d), in particular for (g, r, d) associated to expected maximal Brill�

Noether loci (cf. Lemma 5.3 and Remark 5.5).
The following lemma, that will be central in the proof of Theorem 2.5, shows the connection

between �exible decompositions and the decompositions of Lazarsfeld's form (10).

Lemma 2.4. Let (S,H) ∈ Kr
g,d satisfying (6) and decomposition rigidity. If we can write H ∼

A+B +R, with A,B,R e�ective and nontrivial, and A2 ≥ 0, B2 ≥ 0, then either

(a) g + 4r − 2d = 4 and r > 1, or
(b) r = 1, g = 2d, A = B = L, R2 = −2, h0(R) = 1 and L+R is nef.

Proof. As (S,H) satis�es decomposition rigidity, Example 2.2 shows that H ∼ L+ (H − L) is the
unique �exible decomposition. Also note that h0(A) ≥ 2 and h0(B) ≥ 2.

We �rst treat the case R2 ≥ −2.
We start by proving that

(11) R ·A ≥ −1 and R ·B ≥ −1.

Indeed, say R · A ≤ −2. Then R2 = −2 and nefness of H implies that R · B ≥ 4 and one easily
computes that (A− jR)2 ≥ 0 for j = 1, 2 and (B + jR)2 > 0 for j = 1, 2, 3. Hence,

H ∼ A+ (B +R) ∼ (A−R) + (B +R) ∼ (A− 2R) + (B + 3R)

are all �exible decompositions, contradicting decomposition rigidity. Hence, R · A ≥ −1, and
similarly R ·B ≥ −1, proving (11)

By (11), the two decompositions

H ∼ (A+R) +B ∼ A+ (R+B)

are �exible, whence decomposition rigidity yields that A ∼ B, and both are linearly equivalent to
L or H − L, so that R ∼ H − 2A ∼ ±(H − 2L). If R2 ≥ 0 or more generally if h0(R) ≥ 2, then
also H ∼ 2A+ R is a �exible decomposition, whence decomposition rigidity yields that R ∼ A, so
that H ∼ 3A, contradicting that primitivity of H. Hence it remains to treat the case h0(R) = 1
and R2 = −2. The latter is equivalent to g + 4r − 2d = 4. Hence, if r > 1, we are in case (a). If
r = 1, then g = 2d and we have H ∼ 2A + R, with A ∼ L or A ∼ H − L. In the latter case we
would have 2L ∼ H +R, whence

g = 2d = 2L ·H = H2 +R ·H = 2g − 2 +R ·H,

so that R ·H = 2− g < 0 (as g ≥ 3), contradicting nefness of H. Hence, A ∼ L and H ∼ 2L+R,
which is case (b), where we have left to prove that L + R is nef. If it were not, there would exist
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an irreducible (−2)-curve Γ such that Γ · (L+R) < 0. Since H is nef, we must have Γ · L > 0 and
Γ ·R ≤ −2, whence (R− Γ)2 ≥ 0, yielding the contradiction h0(R) ≥ h0(R− Γ) ≥ 2.

We next treat the case R2 < −2. Since R is e�ective, it must contain a (−2)-curve Γ in its
support such that Γ ·R < 0, and R−Γ is still e�ective and nontrivial. Since H is nef, we must have
Γ · (A+B) ≥ 1, and we can without loss of generality assume that Γ ·A ≥ 1. Then (A+Γ)2 ≥ 0 and
we may replace the decomposition H ∼ A+B +R with the decomposition (A+Γ)+B + (R− Γ).
Repeating the process we will eventually reach a decomposition of the form H ∼ A′ + B′ + R′,
with A′, B′, R′ e�ective and nontrivial, A′2 ≥ 0, B′2 ≥ 0 and R′2 = −2. This reduces us to the
case treated above, which means that we are either in case (a) again, or r = 1, A′ ∼ B′ ∼ L and
h0(R′) = 1. We claim that A ∼ A′ and B ∼ B′ (so that we end up in case (b) again). Indeed,
assume by abuse of notation that at the last but one step of the procedure we have H ∼ A+B+R,
and there is a (−2)-curve Γ such that Γ ·R < 0, R−Γ is still e�ective and nontrivial and Γ ·A > 0.

Then A′ ∼ A+Γ, B′ ∼ B and R′ ∼ R− Γ. Since 0 = L2 = A′2 = (A+Γ)2 = A2 + 2(Γ ·A− 1), we
must have A2 = 0 and Γ ·A = 1. Hence Γ ·A′ = −1, so that

Γ ·H = Γ · (2A′ +R′) = Γ · (2A′ +R− Γ) = Γ ·R < 0,

contradicting nefness of H. □

The main result of this section is the following.

Theorem 2.5. Let (S,H) ∈ Kr
g,d satisfying (6) and decomposition rigidity. Assume further that

if r > 1, then g + 4r − 2d ̸= 4. Then |H| contains smooth irreducible curves of genus g, and for
any smooth irreducible C ∈ |H|, the linear system |OC(L)| is a base point free complete grd, which

is very ample if r ≥ 3. Moreover, there exists a smooth irreducible curve in |H| carrying a gr
′

d′ with
ρ(g, r′, d′) < 0 if and only if there exist non-negative integers r1, r2, d1, d2 such that

r1 + r2 = r′ − 1(12)

d1 + d2 ≤ d′ − d+ 2r − 2(13)

0 ≤ ρ(r, r1, d1) < r(14)

0 ≤ ρ(g + r − d− 1, r2, d2) < g + r − d− 1.(15)

Proof. As (S,H) satis�es decomposition rigidity, Example 2.2 shows that H ∼ L+ (H − L) is the
unique �exible decomposition. Lemma 2.4 and our assumptions imply that L and H − L admit
no nontrivial e�ective decomposition with at least one summand of non-negative self-intersection
except in the case r = 1, g = 2d, H−L ∼ L+R, with R2 = −2, h0(R) = 1 and L+R nef. Therefore,
well-known results on linear systems on K3 surfaces [41, Corollary 3.2, �2.7] imply that L and H−L
are globally generated and the general members of |L| and |H −L| are smooth irreducible curves of
genus g(L) = r ≥ 1 and g(H −L) = g+ r−d− 1 ≥ 1, respectively, and that L is even very ample if
r ≥ 3. Similarly, the general member of |H| is a smooth, irreducible curve of genus g. In particular,
h1(L) = h1(H − L) = 0, whence |OC(L)| is a base point free complete grd for any smooth C ∈ |H|
by Lemma 1.7, and it is even is very ample if r ≥ 3 (as L is).

We have left to prove the last statement of the proposition. We �rst prove the �only if�-part.
Assume that there exists a smooth curve C ∈ |H| carrying a gr

′
d′ with ρ(g, r′, d′) < 0. Its base

point free part is a gr
′

d′′ with d′′ ≤ d′. Let E be the Lazarsfeld�Mukai bundle associated to the base
point free part. The fact that ρ(g, r′, d′′) ≤ ρ(g, r′, d′) < 0 implies that E is non-simple, whence we
can by standard arguments �nd an endomorphism φ : E → E dropping rank everywhere (see [30,
p. 302]). Set F := imφ and G := cokerφ, which both have positive ranks. Being both a quotient
sheaf and subsheaf of E , we have that F is torsion free, globally generated o� a �nite set and with
h2(F ) = 0. In particular, F is nontrivial, whence c1(F ) is represented by an e�ective nonzero
divisor F (see, e.g., [30, Fact at the bottom of p. 302]). Since F must be globally generated o� a
�nite set, we must have F 2 ≥ 0. Let T be the (possibly zero) torsion subsheaf of G and G := G /T .
Then G is torsion free, and, being a quotient sheaf of E , it is globally generated o� a �nite set and
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satis�es h2(G ) = 0. As above, this implies that c1(G ) is represented by an e�ective nonzero divisor
G, with G2 ≥ 0. We thus have

H ∼ c1(E ) ∼ c1(F ) + c1(G ) ∼ c1(F ) + c1(G ) + c1(T ) ∼ F +G+ T,

with T an e�ective (possibly zero) divisor supported on the support of T .
Letting F denote the kernel of the surjection E → G → G , we have a commutative diagram

(16)

0

��

0

��
0 // F

��

// F

��

// T // 0

E

��

E

��
0 // T // G

��

// G

��

// 0

0 0

Note that F is torsion free, being a subsheaf of E . The rightmost vertical sequence in the diagram,
together with the facts that E is locally free and G is torsion free, yields that F is normal (cf., e.g.,
[38, II, Lemma 1.1.16]), whence re�exive (cf., e.g., [38, II, Lemma 1.1.12]), whence locally free.

Also note that h2(F ) = 0, as h2(F ) = 0.
Consider the standard exact sequence

(17) 0 // G // G
∨∨ // τG

// 0,

where G
∨∨

is locally free and τG has �nite support. In particular, also G
∨∨

is globally generated

o� a �nite set and h2(G
∨∨

) = 0. Combining the rightmost vertical sequence in (16) with (17), we
obtain

0 // F // E // G
∨∨ // τG

// 0

where F and G
∨∨

are both locally free, G
∨∨

is globally generated o� a �nite set, h2(F ) =

h2(G
∨∨

) = 0, and τG supported on a �nite set.

Claim 2.6. Also F is globally generated o� a �nite set. Moreover, c1(F ) and c1(G
∨∨

) are linearly
equivalent to L and H − L.

Proof of claim. If T = 0, then T is supported on a �nite set. Since F is also globally generated o�
�nitely many points, the upper horisontal vertical sequence in (16) shows that F is again globally

generated o� a �nite set. Moreover, c1(F ) and c1(G
∨∨

) are linearly equivalent to L and H − L by
decomposition rigidity.

If T ̸= 0, then the hypotheses and Lemma 2.4 yield that r = 1, g = 2d, F ∼ G ∼ L and
T ∼ R ∼ H − 2L, with R2 = −2. In particular, L is represented by a smooth elliptic curve. By

Lemma 1.8 we obtain that rkG
∨∨

= rkG = 1 and rkF = rkF = 1, whence r′ = rkE − 1 = 1.

Hence G
∨∨ ≃ L and F ≃ H − L. In particular, F is globally generated and the claim follows. □

To simplify notation, we can therefore assume that we have an exact sequence

(18) 0 // F // E // G // τ // 0

with F and G both locally free of positive ranks and globally generated o� �nite sets, such that
h2(F ) = h2(G ) = 0 and c1(F ) and c1(G ) are represented by L and H − L, and τ is supported on
a �nite set.
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We set rF := rkF − 1 and rG := rkG − 1, dF := c2(F ), dG := c2(G ), gF := 1
2c1(F )2 + 1 and

gG := 1
2c1(G )2 + 1. Then rF ≥ 0 and rG ≥ 0. Since F and G are globally generated o� �nite sets,

we also have dF ≥ 0 and dG ≥ 0. Since {c1(F ), c1(G )} = {L,H − L}, we have
(19) {gF , gG } = {g(L), g(H − L)} = {r, g + r − d− 1}.

From (18) we �nd

r′ + 1 = rkE = rkF + rkG = rF + 1 + rG + 1,

that is,

(20) rF + rG = r′ − 1;

moreover,

d′ ≥ d′′ = c2(E ) = c2(F ) + c2(G ) + c1(F ) · c1(G ) + length τ ≥ dF + dG + L · (H − L)

= dF + dG + d− 2r + 2,

in other words

(21) dF + dG ≤ d′ − d+ 2r − 2.

If rF = 0, then rkF = 1, so that dF = c2(F ) = 0. This implies that ρ(gF , rF , dF ) =
ρ(gF , 0, 0) = 0. If rF > 0, then, as F is globally generated o� a �nite set, we have a short exact
sequence

(22) 0 // CrF+1 ⊗ OS
// F // AF

// 0,

with AF a torsion free rank-one sheaf on a reduced and irreducible member D ∈ |c1(F )|. As
h2(F ) = 0, the sheaf F is nontrivial, whence h0(F ) > rk(F ) = rF + 1, so that

(23) h0(AF ) > 0.

Dualizing (22), we obtain

(24) 0 // F∨ // CrF+1 ⊗ OS
// BF := Ext1(AF ,OS) // 0,

again with BF a torsion free rank-one sheaf on D, which is globally generated by construction
and satis�es deg(BF ) = c2(F ) = dF . Since h0(F∨) = h2(F ) = 0, we see that h0(BF ) =
rF +1+h1(F ). Now choose h1(F ) general points x1, . . . , xh1(F ) in the smooth locus of D and set

B′
F := BF (−x1 − · · · − xh1(F )). Then

h0(B′
F ) = h0(BF )− h1(F ) = rF + 1,

h1(B′
F ) = h1(BF ) = h0(Ext1(BF ,OS)) = h0(AF ) > 0,

using (23) (cf. [20, Lemmas 2.1 and 2.3]). Moreover, B′
F is still globally generated, so we have a

short exact sequence

(25) 0 // F ′∨ // CrF+1 ⊗ OS
// B′

F
// 0,

de�ning a new Lazarsfeld�Mukai bundle F ′. We have rk(F ′) = rk(F ) = rF + 1, c1(F ′) = c1(F )
and d′F := c2(F ′) = deg(B′

F ) = dF − h1(F ) ≤ dF . Dualizing (25) we obtain

(26) 0 // CrF+1 ⊗ OS
// F ′ // Ext1(B′

F ,OS) // 0,

and since h0(Ext1(B′
F ,OS)) = h1(B′

F ) > 0 (cf. [20, Lemma 2.3]), we see that F ′ is globally
generated o� a �nite set. Recall that D ∼ L or H − L, and, as a consequence of what we said in
the �rst lines of the proof, L and H − L admit no decompositions in moving classes. Hence

ρ(gF , rF , d′F ) ≥ 0,
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as in the proof of [30, Lemma 1.3]. At the same time, since h0(B′
F ) > 0 and h1(B′

F ) > 0, we also
have

ρ(gF , rF , d′F ) = g(D)− h0(B′
F )h1(B′

F ) < g(D) = g(F ).

To summarize, we have in any event found an integer d′F such that 0 ≤ d′F ≤ dF and

(27) 0 ≤ ρ(gF , rF , d′F ) < gF .

Similarly, considering G , we �nd an integer d′G such that 0 ≤ d′G ′ ≤ dG and

(28) 0 ≤ ρ(gG , rG , d
′
G ) < gG .

By (21) we see that

(29) d′F + d′G ≤ d′ − d+ 2r − 2.

Recalling (19), we see that (20), (29) and (27)-(28) imply (12), (13) and (14)-(15), with {r1, r2} =
{rF , rG } and {d1, d2} = {d′F , d′G }.

We then prove the �if�-part.
Assume the existence of the integers as stated in the theorem. Assume �rst that r1, r2 > 0. Then,

by (14)-(15), on any smooth curve in |L| and |H − L| there exist a complete special gr1d1 and gr2d2 ,
respectively. Denote by Ai, i = 1, 2, the corresponding line bundles, and by Di the corresponding
curves. De�ne A ′

i to be the base point free part of Ai, that is, the image of the evaluation map

H0(Ai)⊗ODi → Ai, by Bi the base point free part of ωDi ⊗A ′−1
i , and set A i := ωDi ⊗B−1

i . Then

h0(A i) = h0(Ai) + li and deg(A i) = deg(A ′
i ) + li ≤ di + li, where li is the length of the base locus

of |ωDi ⊗A ′−1
i |. One easily checks, as e.g. in [20, Lemma 3.1], that both |A i| and |ωDi ⊗A

−1
i | are

base point free. Hence, we have found, on (all) smooth curves in |L| and |H −L|, a base point free

complete gri+li
d′i+li

, with d′i ≤ di and li ≥ 0, for i = 1, 2, respectively, and such that its adjoint is also

base point free.
Let F and G be the associated Lazarsfeld�Mukai bundles, of ranks r1 + l1 + 1 and r2 + l2 + 1,

respectively, which are globally generated by the assumption on the base point freeness of the adjoint
linear systems. Set E := F ⊕ G . Then

rk(E ) = r1 + l1 + r2 + l2 + 2 = r′ + 1 + l1 + l2

by (12) and

c2(E ) = c2(F ) + c2(G ) + c1(F ) · c1(G ) = d′1 + l1 + d′2 + l2 + L · (H − L)

= d′1 + l1 + d′2 + l2 + d− 2r + 2 ≤ d1 + l1 + d2 + l2 + d− 2r + 2

≤ d′ + l1 + l2,

by (13). Then, as is well-known, the evaluation map Cr′+1 ⊗ OS → E drops rank along a smooth

curve C ∈ |H| and the cokernel is a line bundle A on C, such that |ωC − A | is a gr
′+l1+l2

c2(E ) ; in

particular C carries a gr
′+l1+l2

d′+l1+l2
, whence also a gr

′
d′ .

Assume now that r1 = 0 and r2 > 0. Then by (15) there exist a complete special gr2d2 on any

smooth curve in |H −L|, and as before, we �nd a complete, base point free gr2+l2
d′2+l2

with d′2 ≤ d2 and

l2 ≥ 0, such that its adjoint is again globally generated. Letting F be its associated Lazarsfeld�
Mukai bundle of rank r2 + l2 + 1, which again is globally generated, we set E := L⊕F , and argue
as above. Similarly if r2 = 0 and r1 > 0.

Finally, if r1 = r2 = 0, we set E = L⊕ (H − L) and argue as before. □

Remark 2.7. A careful look at the proofs of Lemma 2.4 and Theorem 2.5 shows that the condition
�(S,H) ∈ Kr

g,d� can be replaced by �(S,H) a quasi-polarized K3 surface of genus g with a line

bundle L ∈ Pic(S) satisfying L2 = 2r − 2, L.H = d and H ̸∼ 3L�. Also note that whenever H is
n-divisible in Pic(S) for an n ≥ 4, then (S,H) does not satisfy decomposition rigidity.
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3. Flexible decompositions on K3s of Picard number two

We want to �nd K3 surfaces satisfying the conditions in Theorem 2.5, in particular decomposition
rigidity. Throughout the section we will �x integers (g, r, d) satisfying (5) and (6), and a pair
(S,H) ∈ Kr

g,d with Pic(S) = Λr
g,d. For simplicity we write ∆ := ∆r

g,d.
Assume now that H ∼ A+B is a �exible decomposition of H. We may write

A = xH − yL and B = (1− x)H + yL for some x, y ∈ Z.

We may and will assume that A2 ≥ 0 and B2 ≥ −2. The next two lemmas give necessary conditions
on x and y.

Lemma 3.1. We have

(g − 1)x2 − dxy + (r − 1)y2 ≥ 0,(30)

(g − 1)(1− x)2 + d(1− x)y + (r − 1)y2 ≥ −1,(31)
2(g−1)

d (x− 1) < y < 2(g−1)
d x.(32)

Proof. The two �rst conditions are equivalent to 1
2A

2 ≥ 0 and 1
2B

2 ≥ −1, respectively. The last

condition is equivalent to A·H > 0 and B ·H > 0, which are satis�ed since h0(A) ≥ 2 and h0(B) ≥ 2
and H is big and nef. □

Lemma 3.2. If r = 1, then

x = 0 and − g

d
≤ y < 0, or x = 1 and 0 < y ≤ g − 1

d
.

If r ≥ 2, then either

0 < x ≤ max

{
1 + d√

|∆|
√
g−1

, 2(r−1)g

(d−
√

|∆|)
√

|∆|

}
and(33)

2(g−1)
d (x− 1) < y ≤ min

{
d−

√
|∆|

2(r−1) x , g√
|∆|

}
or

− 2(r−1)g

(d+
√

|∆|)
√

|∆|
≤ x ≤ 0 and(34)

max

{
− g√

|∆|
, 2(g−1)

d (x− 1)

}
≤ y ≤ d+

√
|∆|

2(r−1) x, y ̸= 0, y ̸= 2(g−1)
d (x− 1).

Proof. We �rst treat the case r = 1.
If x < 0, then (30) and the right inequality in (32) yield

(g − 1)x ≤ dy < 2(g − 1)x,

whence the contradiction (g − 1)x > 0. If x > 0, then (30) and the left inequality in (32) yield

2(g − 1)(x− 1) < dy ≤ (g − 1)x,

which implies (g − 1)x < 2(g − 1), whence x = 1, and thus 0 < y ≤ g−1
d .

If x = 0, then (31) and the left inequality in (32) yield − g
d ≤ y < 0.

The rest of the proof will deal with the case r ≥ 2.
We �rst note that (32) implies that

(35) either x ≤ 0 and y < 0, or x > 0 and y > 0.

Letting a± :=
d±

√
|∆|

2(r−1) , we note that (30) factors as

(36) (r − 1)(y − a+x)(y − a−x) ≥ 0.
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De�ne the following lines in the plane:

ℓ+ : y = a+x, ℓ− : y = a−x, ℓ : y =
2(g − 1)

d
(x− 1).

Since a+ > 2(g−1)
d > a− > 0, the conditions (36) and (32) yield, also recalling (35), that either

(37) x > 0 and 0 ≤ 2(g − 1)

d
(x− 1) < y ≤ a−x

(which determines a triangle bounded by the x-axis and the lines ℓ and ℓ− in the �rst quadrant) or

(38) x ≤ 0 and
2(g − 1)

d
(x− 1) < y ≤ a+x, y < 0

(which determines a triangle bounded by the y-axis and the lines ℓ and ℓ+ in the third quadrant).
Furthermore, condition (31) implies that the points (x, y) must lie in the region containing the
origin determined by the hyperbola with two branches

c : (g − 1)(1− x)2 + d(1− x)y + (r − 1)y2 = −1,

as shown in the following picture, which shows the case (g, r, d) = (14, 3, 13).

−4 −3 −2 −1 0 1 2 3
x

−4

−3

−2

−1

0

1

2

3

y

�

�
ℓ +

ℓ − ℓ

Q+

Q−

ℓ1

ℓ2

ℓ3

ℓ4
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We compute the intersection points between the curves, as shown in the picture:

Q+ = (x+, y+) := ℓ ∩ ℓ− =

(
1 +

d√
|∆|

,
2(g − 1)√

|∆|

)
,

Q− = (x−, y−) := ℓ ∩ ℓ− =

(
1− d√

|∆|
,−2(g − 1)√

|∆|

)
,

P1 = (x1, y1) := c ∩ ℓ− =

(
2(r − 1)g

(d−
√
|∆|)

√
|∆|

,
g√
|∆|

)
,

P4 = (x4, y4) := c ∩ ℓ+ =

(
− 2(r − 1)g

(d+
√
|∆|)

√
|∆|

, − g√
|∆|

)
,

P2 = (x2, y2) := c ∩ ℓ ∩ {y ≥ 0} =

(
1 +

d
√
g − 1

√
|∆|

,
2
√
g − 1√
|∆|

)
,

P3 = (x3, y3) := c ∩ ℓ ∩ {y ≤ 0} =

(
1− d

√
g − 1

√
|∆|

, −2
√
g − 1√
|∆|

)
.

We �rst consider case (37). We note that x2 ≤ x+ and y+ ≥ y1 ≥ y2. Thus, the points (x, y) lie
in the region bounded by the x-axis, the lines ℓ− and ℓ, and the segment of c between P1 and P2.
Since c is convex, the points (x, y) are contained in the pentagon bounded by the x-axis, the lines
ℓ− and ℓ, and the line segment P1P2. In particular, x ≤ max{x1, x2} and y ≤ y1. Together with
(37), this yields (33).

We next consider case (38). We note that x− ≤ x3 and y− ≤ y4 ≤ y3. The latter implies that
the intersection points P4 and P3 occur in the region where ℓ+ lies to the left of ℓ, whence it follows
that also x4 ≤ x3. (Note, however, that contrary to the impression one may get by the picture, we
could have x3 < 0.) The points (x, y) lie in the region bounded by the y-axis, the lines ℓ+ and ℓ
and the the segment of c between P4 and P3. Since c is convex, the points (x, y) are contained in
the pentagon bounded by the y-axis, the lines ℓ+ and ℓ, and the line segment P4P3. In particular,
x ≥ x4 and y ≤ y4. Together with (38), this yields (34). □

Remark 3.3. A direct computation shows that

2(r − 1)g

(d−
√

|∆|)
√
|∆|

− 2(r − 1)g

(d+
√
|∆|)

√
|∆|

= 1 +
1

g − 1
.

In particular, setting m :=

⌊
max

{
1 + d√

|∆|
√
g−1

, g(2r−2)

(d−
√

|∆|)
√

|∆|

}⌋
, Lemma 3.2 shows that

x ∈ {−m+ 1, . . . ,m}.

As a consequence, we can deduce decomposition rigidity under certain assumptions.

Proposition 3.4. Assume that (6) holds,

(39) d ≥

{
g−3
2 + 2r, if r ≥ 2,

g
2 , if r = 1,

and

(40) (r − 1)(3g − 4)2 < 2d2(g − 2).

Then any (S,H) ∈ Kr
g,d with Pic(S) = Λr

g,d satis�es decomposition rigidity.

Remark 3.5. Condition (39) together with the assumption that d ≤ g − 1 (cf. (6)) imply that
g + 1 ≥ 4r.
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Remark 3.6. If (39) is not ful�lled, then (H − 2L)2 ≥

{
−2, if r ≥ 2,

0, if r = 1,
whence either

H ∼ 2L + (H − 2L) is another �exible decomposition, or the assumption in Theorem 2.5 that
g + 4r − 2d ̸= 4, which is equivalent to (H − 2L)2 ̸= −2, is not satis�ed. Thus (39) is the optimal
bound to be able to apply Theorem 2.5.

Remark 3.7. Condition (40) is automatically ful�lled if r = 1. Moreover, under assumption (39),
condition (40) is for instance implied by the simpli�ed assumption

(41) g ≥ min {r(r + 1), 10(r − 1)} =


r(r + 1), if 2 ≤ r ≤ 7,

10(r − 1), if r ≥ 8.

Indeed, because of (39), condition (40) is implied by

(r − 1)(3g − 4)2 < 2(g − 2)

(
g − 3

2
+ 2r

)2

,

equivalently

(42) g3 + g2(−10r + 10) + g(16r2 + 8r − 27)− 32r2 + 16r + 14 > 0.

As g(16r2+8r−27)−32r2+16r+14 > 0 for r ≥ 2 and g ≥ 3, we see that (42) holds if g ≥ 10(r−1).
If r ≤ 7, one can check that (42) holds when g ≥ r(r + 1). Hence (40) holds.

Proof of Proposition 3.4. We want to prove that H ∼ L+ (H − L) is the unique �exible decompo-
sition of H. To this aim, let H ∼ A+B where A = xH − yL and B = (1− x)H + yL be a �exible
decomposition of H. We will prove that (x, y) = (1, 1) or (0,−1), which both correspond to the
decomposition H ∼ (H − L) + L.

If r = 1, assumption (39) and Lemma 3.2 show that the only possibilities are (x, y) = (1, 1),
(0,−1) or (0,−2). In the latter case we have B ∼ H − 2L and B2 = −2. We claim that B is the
only (−2)-divisor on S, which will prove that B is irreducible, giving the contradiction h0(B) = 1.
Indeed, if Γ is a (−2)-divisor on S, we may write Γ ∼ aH − bL, with a > 0, since multiples of L
can never contain H. Then −1 = 1

2Γ
2 = a[a(g − 1) − bd], whence a = 1 and g = bd, so b = 2 and

Γ ∼ H − 2L ∼ B. This gives the desired contradiction, showing that the case (x, y) = (0,−2) does
not occur, as desired.

Now suppose r ≥ 2.
We �rst claim that if −3 ≤ y ≤ 3 and 0 ≤ x ≤ 1, then again (x, y) = (1, 1) or (0,−1). Indeed,

Lemma 3.2 shows that it su�ces to rule out the cases (x, y) = (0,−2), (0,−3), (1, 2) and (1, 3). In
these cases one of A or B is H − 2L or H − 3L. By (39) we have

(H − 2L)2 = 2g + 8r − 10− 4d ≤ 2g + 8r − 10− 4

(
g − 3

2
+ 2r

)
= −4,

a contradiction. Similarly, we have

−2 ≤ (H − 3L)2 = 2g + 18r − 20− 6d ≤ 2g + 18r − 20− 6

(
g − 3

2
+ 2r

)
= 6r − 11− g,

whence g ≤ 6r − 9. But then, using this and (39) once more, we obtain the contradiction

(H−3L) ·H = 2g−2−3d ≤ 2g−2−3

(
g − 3

2
+ 2r

)
=

g + 5

2
−6r ≤ 1

2
(6r − 4)−6r = −3r−2 < 0.

It remains to show that −3 ≤ y ≤ 3 and 0 ≤ x ≤ 1. By Remark 3.3 and Lemma 3.2, to show
that 0 ≤ x ≤ 1 it su�ces to show that

(43) 1 +
d√

|∆|
√
g − 1

< 2
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and

(44)
2(r − 1)g

(d−
√
|∆|)

√
|∆|

< 2.

Having done this, the case x = 1 yields, because of the right inequality in (32), that

0 < y <
2(g − 1)

d
≤ 2(g − 1)

g−3
2 + 2r

≤ 4(g − 1)

g + 5
< 4,

and similarly the case x = 0 yields, because of the left inequality in (32), that 0 < −y < 4. We
have therefore left to prove (43) and (44).

Inequality (44) is equivalent to

d2 − (r − 1)(3g − 4) < d
√
|∆|.

The latter is implied by the inequality obtained by squaring both sides, which is (40). Thus, (44)
is satis�ed.

Inequality (43) is equivalent to

(45) 4(g − 1)2(r − 1) < (g − 2)d2.

Our assumptions yield that g ≥ 4r − 1 ≥ 7, cf. Remark 3.5, and then one readily checks that
4(g − 1)2 ≤ 1

2 (3g − 4)2, so that (45) is implied by (40). Thus, (43) is also satis�ed. □

4. Bounds on the limits of Brill�Noether special divisors

The aim of this section is to give su�cient conditions so that (12)-(15) in Theorem 2.5 cannot be

veri�ed, thus ruling out the existence of a gr
′

d′ as in that theorem.

Lemma 4.1. Assume that r′ ≥ 1, 2 ≤ d′ ≤ g − 1, (6) is satis�ed, and that

(46)

{
d− r + r′ − d′ > r

r′ − 1, if r′ ≤ r,

g + r′ − 1− d′ − g+r−d−1
r′−r+1 > 0, if r < r′.

Then there are no non-negative integers r1, r2, d1, d2 satisfying (12)�(15).

Proof. Assume, to get a contradiction, that r1, r2, d1, d2 are non-negative integers satisfying (12)�
(15).

We have

(47) 0 ≤ r1 ≤ r′ − 1.

Condition (14) can be rewritten as

(48) r1 +
r1r

r1 + 1
≤ d1 < r1 + r.

From the left hand inequality of (15) combined with (12) and (13), along with the fact that ρ(g, r,−)
is an increasing function, we obtain

ρ(g + r − d− 1, r′ − 1− r1, d
′ − d+ 2r − 2− d1) ≥ 0,

which can be rewritten as

(49) d1 ≤ d′ + r + r1 − r′ − g +
g + r − d− 1

r′ − r1
.

Grant for the moment the following:

Claim 4.2. If

• r′ ≤ r, or
• r1 < r < r′,
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then

(50) d′ + r + r1 − r′ − g +
g + r − d− 1

r′ − r1
< r1 +

r1r

r1 + 1
.

We show how the lemma follows from the claim.
Assume that r′ ≤ r. Then Claim 4.2 shows that (49) and the left hand inequality of (48) are

incompatible. We are therefore done in this case.
Assume, �nally, that r′ > r. Then Claim 4.2 shows that (49) and the left hand inequality of (48)

are compatible only for r1 > r − 1. This latter inequality is on the other hand equivalent to

r + r1 −
(
r1 +

rr1
r1 + 1

)
< 1.

Thus there is no integer d1 satisfying (48). This concludes the proof of the lemma.
We have left to prove the claim:

Proof of Claim 4.2. Since the left hand side of (50) is a convex function of r1 and the right hand
side is a concave function of r1, it su�ces to prove the inequality for the two boundary values r1 = 0
and

r1 =

{
r′ − 1, if r′ ≤ r,

r − 1 if r′ > r,

cf. (47), where it reads, respectively,

(51) d′ + r − r′ − g +
g + r − d− 1

r′
< 0,

(52) d′ − d+ 2r − 2 < r′ − 1 +
(r′ − 1)r

r′
, if r′ ≤ r,

and

(53) d′ + 1− r′ − g +
g + r − d− 1

r′ − r + 1
< 0, if r′ > r.

One easily veri�es that (52) is equivalent to the upper inequality in (46) and implies (51). We are
therefore done in the case r′ ≤ r.

Assume now that r′ > r. If r ≥ r′ − g−d−1
r′+1 , one veri�es that (53) implies (51). If r < r′ − g−d−1

r′+1 ,

then g−d−1 < (r′−r)(r′+1). Using this together with d′ ≤ g−1, one checks that (51) is satis�ed.
Thus, (51) is redundant, and we are left with (53), which can be rewritten as the lower inequality
in (46). This concludes the proof of the claim. □

Having proved the claim, the lemma follows. □

5. Main result and applications

We summarize the results of the previous sections as the main result of the paper.

Theorem 5.1. Let g, r, d, r′, d′ be integers satisfying

g ≥ 3, r ≥ 1, r′ ≥ 1, 2 ≤ d ≤ g − 1, 2 ≤ d′ ≤ g − 1,(54)

d ≥

{
g−3
2 + 2r, if r ≥ 2,

g
2 , if r = 1,

(55)

(r − 1)(3g − 4)2 < 2d2(g − 2),(56)

ρ(g, r′, d′) < 0,(57) {
d− r + r′ − d′ > r

r′ − 1, if r′ ≤ r,

g + r′ − 1− d′ − g+r−d−1
r′−r+1 > 0, if r < r′.

(58)
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Then for any K3 surface (S,H) ∈ Kr
g,d with Pic(S) = Λr

g,d, we have that |H| contains smooth

irreducible curves, and for any such C ∈ |H| we have:

(i) C has genus g,
(ii) |OC(L)| is a base point free complete grd, which is very ample if r ≥ 3,

(iii) C carries no gr
′

d′ .

Proof. Condition (56) implies (5), which allows us to construct a K3 surface (S,H) ∈ Kr
g,d with

Pic(S) = Λr
g,d as in �3. Conditions (54)-(56) are the conditions in Proposition 3.4, which guarantee

that (S,H) satis�es decomposition rigidity. For r ≥ 2, inequality (55) can be rewritten as g + 4r−
2d ≤ 3, so that also the assumption that g + 4r − 2d ̸= 4 in Theorem 2.5 is satis�ed. Thus, by the
latter, properties (i) and (ii) in the theorem are ful�lled. If (iii) is not ful�lled, then, due to (57),
there would be integers r1, r2, d1, d2 satisfying (12)-(15). But condition (58) is (46) of Lemma 4.1,
which then tells us that such integers cannot exist. Thus, (iii) is ful�lled. □

Remark 5.2. Remark 3.7 tells us that condition (56) can be replaced by the simpli�ed assumption

(59) g ≥ min {r(r + 1), 10(r − 1)} =


r(r + 1), if 2 ≤ r ≤ 7,

10(r − 1), if r ≥ 8.

We will now deduce Theorem 1 in the introduction from Theorem 5.1. To this aim, we �rst need
two lemmas.

Lemma 5.3. Assume that the triple (g, r, d) is associated to an expected maximal Brill�Noether
locus, g ≥ 3 and (g, r, d) ̸= (6, 2, 5). Then conditions (55)-(56) in Theorem 5.1 are satis�ed.

Proof. If r = 1, then d =
⌈g
2

⌉
by (2), so (55) is satis�ed. If r ≥ 2, we have g ≥ r(r + 1) by (3).

Remark 5.2 yields that (56) is satis�ed. Using (g, r) ̸= (6, 2), one can check that the inequality

r − 1 +

⌈
gr

r + 1

⌉
≥ g − 3

2
+ 2r

holds, whence (2) implies that (55) is satis�ed. Hence, (55)-(56) in Theorem 5.1 are satis�ed. □

Lemma 5.4. Assume that the triple (g, r, d) is associated to an expected maximal Brill�Noether
locus, with 2 ≤ d ≤ g − 1, and (r′, d′) a pair of integers such that r′ ≥ 1, 2 ≤ d′ ≤ g − 1,
ρ(g, r′, d′) < 0, and either

(a) (g, r′, d′) is associated to an expected maximal Brill�Noether locus, r′ ̸= r, or
(b) r′ = r and d′ ≤ d− 1, or
(c) r′ = r + 1 and d′ ≤ d+ 1.

Then, except for the cases

(60) (g, r, d, r′, d′) ̸= (6, 2, 5, 1, 3), (7, 2, 6, 1, 4), (8, 1, 4, 2, 7), (9, 2, 7, 1, 5),

condition (58) in Theorem 5.1 is satis�ed.

Proof. It is straightforward to check that (58) is satis�ed under assumptions (b) and (c). We
are therefore left with case (a), where r′ ̸= r and (g, r′, d′) is associated to an expected maximal
Brill�Noether locus.

We �rst prove the lower inequality in (58). After substituting expressions for d and d′ given by
(2) the inequality is equivalent to

(61)

⌈
gr′

r′ + 1

⌉ (
r′ + 1− r

)
<

⌈
gr

r + 1

⌉
+ g(r′ − r).

The latter is implied by (
gr′

r′ + 1
+ 1

)(
r′ + 1− r

)
≤ gr

r + 1
+ g(r′ − r),
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which is equivalent to

(62) r′ + 1− r ≤ gr(r′ − r)

(r + 1)(r′ + 1)
.

Since g ≥ r′(r′ + 1) ≥ (r + 1)(r′ + 1) by (3), the latter is implied by

r′ + 1− r ≤ r(r′ − r),

which is easily seen to hold as soon as r ≥ 2. This leaves the case r = 1, where (62) reads

g ≥ 2r′(r′ + 1)

r′ − 1
.

Using the fact that g ≥ r′(r′+1) by (3), we see that the latter is satis�ed as long as r′ ≥ 3. Recalling
that r′ ≥ 2 (as r′ > r), this leaves the case (r, r′) = (1, 2), in which case (61) reads

(63) 2

⌈
2g

3

⌉
< g +

⌈g
2

⌉
.

One easily checks that this is satis�ed, since we are assuming (g, r, d, r′, d′) ̸= (8, 1, 4, 2, 7). This
�nishes the proof of the lower inequality in (58).

We �nally prove the upper inequality in (58). After substituting the expressions for d and d′

given by (2), the inequality is equivalent to

(64)

⌈
r′g

r′ + 1

⌉
+

r

r′
<

⌈
rg

r + 1

⌉
+ 1.

The latter inequality is implied by
r′g

r′ + 1
+

r

r′
≤ rg

r + 1
,

which can be rewritten as
r

r′
≤ g(r − r′)

(r′ + 1)(r + 1)
.

By (3) the latter inequality is implied by

1

r′
≤ r − r′

r′ + 1
,

which is equivalent to
r′ + 1

r′
≤ r − r′.

Since r′ < r, the latter is satis�ed unless r′ = r − 1. We have therefore left to prove (64) when
r′ = r − 1, in which case it reads

(65)

⌈
(r − 1)g

r

⌉
+

1

r − 1
<

⌈
rg

r + 1

⌉
.

Recall that r ≥ 2 (as r ≥ r′ + 1). If r ≥ 3, then (65) is implied by

(r − 1)g

r
+ 1 ≤ rg

r + 1
,

which can be rewritten as g ≥ r2 + r, which holds by (3). Thus, (65) is proved if r ≥ 3. If r = 2,
then (65) reads ⌈g

2

⌉
+ 1 <

⌈
2g

3

⌉
.

Using our assumptions that (g, r, d, r′, d′) ̸= (6, 2, 5, 1, 3), (7, 2, 6, 1, 4), (9, 2, 7, 1, 5), one veri�es that
the latter inequality is satis�ed. Thus, (65) is proved if r = 2. This �nishes the proof of the upper
inequality in (58). □
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Remark 5.5. While the hypotheses of Theorem 5.1 do not hold in the case (g, r, d) = (6, 2, 5),
we still have the existence of a polarized K3 surface (S,H) ∈ K2

6,5 such that |H| contains smooth

irreducible curves of genus 6 and |OC(L)| is a base point free very ample complete g25. Indeed,
the existence of (S,H) with Pic(S) = Λ2

6,5 such that the conclusions (i)�(ii) of Theorem 5.1 are
satis�ed follows as above; this has, in fact, already been done (in a more general setting) in [16,
Thm. 4.3]. In particular, the curves are isomorphic to smooth plane quintics, whence do not carry

g13s, so they again do not carry any gr
′

d′ with (r′, d′) ̸= (2, 5). One may also check that (S,H) satis�es
decomposition rigidity.

Finally, applying all this to the expected maximal Brill�Noether loci, we can now give a proof of
Theorem 1.

Proof of Theorem 1. Lemma 5.3 tells us that (g, r, d) satis�es conditions (54)-(56) in Theorem 5.1.
In particular, by Proposition 3.4, the hypotheses in Theorem 2.5 are satis�ed by any K3 surface
S with Pic(S) = Λr

g,d, as in �1.2. Let C ∈ |H| be any smooth curve and assume it carries a gr
′

d′

with ρ(g, r′, d′) < 0 and (r′, d′) ̸= (r, d), hence C also carries a gr
′′

d′′ with (g, r′′, d′′) associated to
an expected maximal Brill�Noether locus, obtained using the trivial containments Mr

g,d ⊂ Mr
g,d+1

and Mr
g,d ⊂ Mr−1

g,d−1, along with Serre duality.

Assume that (r′′, d′′) ̸= (r, d). Then, if (g, r, d) ̸= (6, 2, 5), Lemma 5.4 tells us that all the
remaining conditions in Theorem 5.1 are satis�ed for (r′, d′) = (r′′, d′′) (recall that we are assuming
(g, r, d) ̸= (7, 2, 6), (8, 1, 4), (9, 2, 7)). Hence, by the same theorem, we get the desired contradiction,

that is, that the gr
′′

d′′ cannot exist.

Assume that (r′′, d′′) = (r, d). Then the grd is obtained from the gr
′

d′ by a series of trivial con-
tainments and Serre duality, the last of which is Serre duality or one of the trivial containments

Mr
g,d−1 ⊂ Mr

g,d or M
r+1
g,d+1 ⊂ Mr

g,d. However, if Serre duality were the last step, then the gg−d+r−1
2g−2−d

was obtained using trivial containments from the Serre duals of a gr+1
d+1 or a grd−1. Thus, in any case,

C carries a grd−1 or a gr+1
d+1. Again if (g, r, d) ̸= (6, 2, 5), Lemma 5.4 tells us that all the remain-

ing conditions in Theorem 5.1 are satis�ed for (r′, d′) = (r, d − 1) or (r + 1, d + 1), and we get a
contradiction again.

The remaining case of (g, r, d) = (6, 2, 5) has already been handled by a direct geometric argument
in [2, Proposition 6.1]. One can, in fact, also handle this case using K3 surfaces, as in Remark 5.5. □

Remark 5.6. Theorem 5.1 directly shows that the general curve in the Brill�Noether loci M1
7,4,

M2
8,7, and M1

9,5 is grd-general for (r, d) = (1, 4), (2, 7), (1, 5), respectively, which are the maximal
Brill�Noether loci in the exceptional genera, as in Example 1.3. Hence Theorem 1 says that any
expected maximal Brill�Noether locus Mr

g,d contains a grd-general curve, unless g = 7, 8, 9.

Remark 5.7. This also answers the question of containments of Brill�Noether loci of the form
Mr

g,d ⊂ Mr′
g,d′ with ρ(g, r, d) = −2 and ρ(g, r′, d′) = −1, studied in [3, 9, 44]. Indeed, as observed

in [7, Lemma 1.2], Brill�Noether loci with ρ = −1,−2 are expected maximal.

We give a few examples in genus 7, 8, 9 of distinguishing Brill�Noether loci using Theorem 5.1.

Example 5.8. In genus 7, Theorem 5.1 yields that the locus M2
7,6 is not contained in any Brill�

Noether locus except M1
7,4, which is the unexpected containment of Example 1.3.

In genus 8, we obtain the non-containment M1
8,4 ⊈ M2

8,6, thus the locus M1
8,4 is not contained

in any Brill�Noether locus except M2
8,7, again an unexpected containment of Example 1.3. The

containment M2
8,6 ⊂ M1

8,4 is obtained in [34, Lemma 3.4].

In genus 9, we obtain that the locus M2
9,7 is not contained in any Brill�Noether locus except

M1
9,5.

Theorem 5.1 also gives non-containments of non-maximal Brill�Noether loci.
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Example 5.9. In genus 11, we obtain the non-containments M3
11,10 ⊈ M2

11,8 and M2
11,8 ⊈ M3

11,10.

In fact, Theorem 5.1 gives in�nitely many non-containments of Brill�Noether loci that are not
maximal. As a sample, let us see what happens when we lower the maximal degrees a little. Recall
the de�nition of dmax(g, r) from (2).

Proposition 5.10. Let Mr
g,dmax(g,r)

and Mr′

g,dmax(g,r′)
be expected maximal loci with r ≥ 2, r′ ≥ 2

and r ̸= r′. We have a non-containment Mr
g,d ⊈ Mr′

g,dmax(g,r′)−1 in any of the following cases:

• d ≥ dmax(g, r)− 1 and
◦ r′ < r, (r, r′, g) ̸= (3, 2, 12), or
◦ (r, r′) = (2, 3), g ∈ {13, 14, 15, 16, 18},

• d ≥ dmax(g, r)− 2 and (r, r′) = (2, 4), g ∈ {20, 21, 22, 24},
• d ≥ dmax(g, r)− 3 and (r, r′) = (2, 5), g = 30,
• d ≥ dmax(g, r)− (r′ − r + 1) and

◦ r′ > r ≥ 3, or
◦ r′ ≥ 6, r = 2, or
◦ (r, r′) = (2, 5) and g ≥ 31, or
◦ (r, r′) = (2, 4) and g ≥ 25, or g = 23, or
◦ (r, r′) = (2, 3) and g ≥ 19, or g = 17.

Proof. We have proved that(58) holds for d = dmax(g, r) and for d′ = dmax(g, r
′). Setting instead

d′ = dmax(g, r
′)− 1, we therefore see that the upper inequality in (58) holds for d ≥ dmax(g, r

′)− 1,
whereas the lower one hold for d ≥ dmax(g, r) − (r′ − r + 1). Since g ≥ r(r + 1) by maximality of
Mr

g,dmax(g,r)
(cf. (3)), Remark 5.2 tells us that (56) is redundant. Hence, it remains to check (55)

by substituting for the values of d and using g ≥ r(r + 1) and g ≥ r′(r′ + 1). We leave the details
to the reader. □

Example 5.11. In genus 14, Proposition 5.10 gives the non-containments M3
14,12 ⊈ M2

14,10 and

M2
14,10 ⊈ M3

14,12.

We also give an example where Theorem 5.1 does not su�ce to prove a non-containment.

Example 5.12. Let (g, r, d) = (9, 2, 6) and (g, r′, d′) = (9, 3, 8). We cannot apply Theorem 2.5, as
on the lattice Λ2

9,6, we have (H − 2L)2 = 0, hence (S,H) does not satisfy decomposition rigidity.

However, from [3, Proposition 2.5], we obtain M2
9,6 ⊈ M3

9,8.
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