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Abstract. We study the restriction of Brill–Noether loci to the gonality stratification of the moduli
space of curves of fixed genus. As an application, we give new proofs that Brill–Noether loci with
ρ = −1,−2 have distinct support, and for fixed r give lower bounds on when one direction of the
non-containments of the Maximal Brill–Noether Loci Conjecture hold for Brill–Noether loci of rank
r linear systems. Using these techniques, we also show that Brill–Noether loci corresponding to
rank 2 linear systems are maximal as soon as g ≥ 28 and prove the Maximal Brill–Noether Loci
Conjecture for g = 20.

Introduction

If classical Brill–Noether theory concerns linear systems on general algebraic curves, then refined
Brill–Noether theory can be viewed as the study of linear systems on special curves. The main
theorem of Brill–Noether theory [11, 12] implies that the general smooth projective curve C of
genus g admits a nondegenerate morphism C → Pr of degree d if and only if the Brill–Noether
number

ρ(g, r, d) := g − (r + 1)(g − d+ r)

is non-negative. A degree d map C → Pr determines a degree d line bundle L on C together with
a subspace V ⊂ H0(L) of dimension r + 1. Such a pair (L, V ) is called a grd on C.

The last few years have seen a major advance in a refined Brill–Noether theory for curves of
fixed gonality [6, 15, 17, 18, 24]. In particular, the general smooth projective k-gonal curve C of
genus g admits a grd if and only if Pflueger’s Brill–Noether number

ρk(g, r, d) := max
0≤ℓ≤r′

ρ(g, r − ℓ, d)− ℓk

where r′ := min{r, g − d+ r − 1}, is non-negative. More broadly, one of the main goals of refined
Brill–Noether theory is to understand when a “general” curve with a grd admits a gse, where here,
“general” should mean a general curve in a suitable component of the Brill–Noether locus

Mr
g,d = {C ∈ Mg : C admits a grd}

when ρ(g, r, d) < 0. Motivated by conjectures concerning lifting line bundles on curves in K3 sur-
faces, the first two authors posed a conjecture concerning the containments between Brill–Noether
loci. Adding basepoints and removing non-basepoints determines various trivial containments be-
tween Brill–Noether loci. Accounting for these, one obtains the notion of the expected maximal
Brill–Noether loci, see Section 1.2.

Conjecture 1 (Maximal Brill–Noether Loci Conjecture). For any g ≥ 3, except for g = 7, 8, 9, the
expected maximal Brill–Noether loci are maximal with respect to containment.

In other words, the conjecture states that for any two expected maximal Brill–Noether loci Mr
g,d

and Ms
g,e, there exists a curve C of genus g admitting a grd but not a gse, and vice versa.

Using the recently established refined Brill–Noether theory for curves of fixed gonality, one
deduces (see [1, Proposition 1.6]) that the expected maximal M1

g,⌊ g+1
2

⌋ is not contained in any

expected maximal Brill–Noether loci Mr
g,d with r ≥ 2, and is thus maximal, except when g = 8. In

this note, we explain how additional non-containments between expected maximal Brill–Noether
loci can be obtained by restricting to the k-gonal locus. In particular, we obtain the following.

Theorem 1. Fix r ≥ 2. For g sufficiently large, there is a non-containment Mr
g,d ⊈ Ms

g,e for all
expected maximal Brill–Noether loci with s > r.

In fact, we provide an explicit bound for g in terms of r in Theorem 4.9.
1
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In [1], the first two authors proved the Maximal Brill–Noether Loci Conjecture for g ≤ 19 and
g = 22, 23 using K3 surface techniques. In Section 2.1, we show how the techniques developed to
prove Theorem 1 by restricting to the k-gonal locus also allow us deduce the following.

Theorem 2. The Maximal Brill–Noether Loci Conjecture holds for g = 20.

Furthermore, we reduce the Maximal Brill–Noether Loci Conjecture in genus 21 to verifying just
a single non-containment M3

21,18 ⊈ M4
21,20.

Outline. In Section 1, we give background on Brill–Noether loci and Brill–Noether theory of
curves of fixed gonality. In Section 2, we study the maximum gonality stratum contained in a
Brill–Noether locus, and show how it can be used to prove non-containments of Brill–Noether loci.
In Section 3, we prove further non-containments of Brill–Noether loci. In Section 4, we focus on
expected maximal Brill–Noether loci, give a new proof that Brill–Noether loci with −ρ ≤ 2 are
distinct, and prove an explicit version of Theorem 1 in Theorem 4.9.
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1. Brill–Noether loci

Throughout this paper, we work exclusively over the complex numbers, but we note that there are
analogous results for the Brill–Noether theory for curves of fixed gonality in positive characteristic.

1.1. Brill–Noether loci. Brill–Noether theory studies maps of curves C to projective space. A
nondegenerate morphism C → Pr of degree d is determined by a grd, namely, a point in the space

Gr
d(C) := {(L, V ) | L ∈ Picd(C), V ⊆ H0(C,L), dimV = r + 1}.

The image of the natural map Gr
d(C) → Picd(C) is

W r
d (C) := {L ∈ Picd(C) | h0(C,L) ≥ r + 1}.

These spaces can be globalized to moduli spaces Gr
d → Mg and Wr

d → Mg over the moduli space
Mg of smooth curves of genus g, where the fiber above C is Gr

d(C) and W r
d (C), respectively. The

Brill–Noether loci
Mr

g,d := {C ∈ Mg | C admits a grd}
are the images of the corresponding maps Gr

d → Mg.
The Brill–Noether–Petri theorem [12, 19] states that for a general curve C of genus g, the variety

W r
d (C) is non-empty exactly when the Brill–Noether number

ρ(g, r, d) := g − (r + 1)(g − d+ r)

is non-negative. Consequently, when ρ(g, r, d) ≥ 0, we have Mr
g,d = Mg. Meanwhile, when

ρ(g, r, d) < 0, Mr
g,d is a proper subvariety of Mg, all of whose components have codimension

at most −ρ(g, r, d) [25]. It is known that Brill–Noether loci with −3 ≤ ρ(g, r, d) ≤ −1 have
codimension exactly −ρ, and Brill–Noether loci with ρ = −1,−2 are irreducible [2, 8, 25].

The stratification of Mg by Brill–Noether loci and the interaction of various Brill–Noether loci
is useful in the study of the birational geometry of Mg, see [9, 13]. Brill–Noether loci with ρ = −1
have been studied by Harris, Mumford, Eisenbud, and Farkas [7, 8, 9, 10, 13], in particular, in the
study of the Kodaira dimension of M23. More recently, Choi, Kim, and Kim [3, 4] showed in a
series of papers that Brill–Noether divisors have distinct support. Choi and Kim [2] showed that
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Brill–Noether loci with ρ = −2 are irreducible and are not contained in each other; and further
showed that Brill–Noether loci with ρ = −2 are not contained in certain Brill–Noether divisors; for
new proofs of these non-containments see Theorem 4.3 and Theorem 4.4.

1.2. Expected maximal Brill–Noether loci. There are various containments among Brill–
Noether loci. In particular, there are trivial containments Mr

g,d ⊆ Mr
g,d+1 obtained by adding

a basepoint to a grd on C; and Mr
g,d ⊆ Mr−1

g,d−1 when ρ(g, r − 1, d − 1) < 0 by subtracting a

non-basepoint, cf. [9, 20]. Modulo these trivial containments, the first two authors [1] defined the
expected maximal Brill–Noether loci as the Mr

g,d where for fixed r ≥ 1, with 2r ≤ d ≤ g − 1, d is

maximal such that ρ(g, r, d) < 0 and ρ(g, r − 1, d − 1) ≥ 0. Note that (after accounting for Serre

duality which gives Mr
g,d = Mg−d+r−1

g,2g−2−d) every Brill–Noether locus with ρ(g, r, d) < 0 is contained in

at least one expected maximal Brill–Noether locus. They then posed Conjecture 1, which says that
the expected maximal Brill–Noether loci should be maximal with respect to containment, except
when g = 7, 8, 9. (In genus 7, 8 and 9, there are unexpected containments of Brill–Noether loci
coming from projections from points of multiplicity ≥ 2 in genus 7 and 9 [1, Propositions 6.2 and
6.4] or from a trisecant line in genus 8, as shown by Mukai [23, Lemma 3.8].)

Let γ(r, d) := d− 2r be the Clifford index.

Lemma 1.1. If Mr
g,d is an expected maximal Brill–Noether locus, then 1 ≤ r ≤

⌊√
g − 1

2

⌋
. More-

over, for each such r, there is an expected maximal Brill–Noether locus Mr
g,d.

Proof. As observed in [1, Remark 1.2], the maximum γ(r, d) such that ρ(g, r, d) ≤ 0 is g− 2
√
g+ 1

which occurs at r =
√
g − 1, the intersection of ρ(g, r, d) = 0 with d = g − 1. Thus we have

γ(r, d) ≤ g+
⌊
−2

√
g
⌋
+1 for an expected maximal Brill–Noether locus. As the trivial containments

both increase γ and either fix r or decrease r by one, the maximum r of an expected maximal
Brill–Noether locus occurs when γ = g+

⌊
−2

√
g
⌋
+1, or when γ = g−2

√
g if g is a square. Noting

that d ≤ g−1, we have γ ≤ g−1−2r. If
√
g /∈ Z, then r ≤ ⌈2√g⌉

2 −1. If
√
g ∈ Z, then r ≤ √

g− 1
2 .

As r is an integer, and

õ
⌈2√g⌉

2

û
− 1 =

⌊√
g − 1

2

⌋
, the results follow. Finally, since the curve defined

by ρ(g, r, d) = 0 in the (r, γ)-plane is monotonically increasing for 1 ≤ r ≤ √
g − 1, there is one

expected maximal Brill–Noether locus for each r satisfying these bounds. □

Once a rank r satisfying the conditions of Lemma 1.1 is fixed, the degree d that makes Mr
g,d

expected maximal is uniquely determined: it is the largest d such that ρ(g, r, d) < 0, namely

(1) d = dmax(g, r) := r +

°
gr

r + 1

§
− 1.

For ease of notation, for each 1 ≤ r ≤
⌊√

g − 1
2

⌋
, we shall write Mr

g := Mr
g,dmax(g,r)

for the

expected maximal Brill–Noether locus of rank r linear series. In other words, Lemma 1.1 says that
the expected maximal Brill–Noether loci in Mg are precisely the Mr

g for each 1 ≤ r ≤
⌊√

g − 1
2

⌋
.

1.3. Brill–Noether theory of curves with fixed gonality. Recall that the gonality of a curve
is the minimal k such that C admits a g1k. The Brill–Noether locus M1

g,k is the closure of the locus

of k-gonal curves. Because the corresponding Hurwitz space of degree k covers is irreducible, M1
g,k

is irreducible. It therefore makes sense to talk about a general k-gonal curve.
In general, W r

d (C) can have multiple components of varying dimensions. Pflueger [24] showed
that for a general k-gonal curve

(2) dimW r
d (C) ≤ ρk(g, r, d) := max

ℓ∈{0,...,r′}
ρ(g, r − ℓ, d)− ℓk,

where r′ := min{r, g − d + r − 1}. Since W r
d (C) may not have pure dimension, dimW r

d (C) above
means the maximum of the dimensions of its components. Subsequently, Jensen and Ranganathan
[15] showed that a component of the maximum possible dimension exists.
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Theorem 1.2 (Jensen–Ranganathan [15]). If C is a general k-gonal curve, then dimW r
d (C) =

ρk(g, r, d). In particular, a general k-gonal curve admits a grd if and only if ρk(g, r, d) ≥ 0.

The dimensions and enumeration of all components of W r
d (C) were subsequently determined by

the third author and others by studying associated splitting loci [5, 6, 15, 17, 18]. For a summary
of these results, see [14]. Our applications to maximal Brill–Noether loci will rely only on the
statement in Theorem 1.2.

2. The maximal gonality stratum in a Brill–Noether locus

Throughout the remainder of this paper, we add the assumption that ρ < 0 for a Brill–Noether
locus. Our main new ingredient is the following invariant of a Brill–Noether locus.

Definition 2.1. For a given genus g, rank r, and degree d, we define κ(g, r, d) to be the maximal
k ≥ 1 such that a general curve of genus g and gonality k admits a grd. In other words, κ(g, r, d) is
the maximal k such that M1

g,k ⊆ Mr
g,d.

Our basic observation is that κ can separate Brill–Noether loci.

Proposition 2.2. If κ(g, r, d) > κ(g, s, e), then Mr
g,d ⊈ Ms

g,e.

Proof. Assume, to get a contradiction, that Mr
g,d ⊆ Ms

g,e, and let k = κ(g, r, d) > κ(g, s, e). By

the definition of κ, M1
g,k ⊈ Ms

g,e. But the assumption implies that M1
g,k ⊆ Mr

g,d ⊆ Ms
g,e, which is

a contradiction. □

κ(g, r, d)= k > κ(g, s, e) = k − 1

M1
g,k−1 ⊂ M1

g,k ⊂ M1
g,k+1

Mr
g,d Ms

g,e

A general curve of gonality k is contained in Mr
g,d, but not in Ms

g,e.

Remark 2.3. Noting the trivial containments of Brill–Noether loci, if κ(g, r, d) > κ(g, s, e) then
Proposition 2.2 in fact implies non-containments of Brill–Noether loci of the form Mr

g,d ⊈ Ms
g,a

for all a ≤ e and of the form Mr
g,d ⊈ Ms+i

g,e+i for all i ≥ 1.

By Theorem 1.2, a general curve of gonality k admits a grd if and only if ρk(g, r, d) ≥ 0, so

(3) κ(g, r, d) = max{k : ρk(g, r, d) ≥ 0}.
We remark that if Mr

g,d is non-empty, then d − 2r ≥ 0 by Clifford’s theorem, from which we can
deduce the following bound.

Lemma 2.4. Let g, r, d ≥ 1 satisfy d− 2r ≥ d and g − d+ r ≥ 1. Then κ(g, r, d) ≥ 2.

Proof. If we show that M1
g,2 is contained in every non-empty Brill–Noether locus Mr

g,d then it

follows that κ(g, r, d) ≥ 2. To this end, if C has a g12, then for any p ∈ C we have that rg12+(d−2r)p
is a grd on C.

We can also argue directly with Pflueger’s formula (2) by setting ℓ = min{r, g − d+ r − 1} and
k = 2, from which we obtain ρ2(g, r, d) ≥ d− 2r ≥ 0. Then κ(g, r, d) ≥ 2 by equation (3). □
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Despite the combinatorial nature of (2) and (3), we have the following closed formula.

Proposition 2.5. Suppose d ≤ g − 1. We have

κ(g, r, d) =

® ⌊
d
r

⌋
if g + 1 >

⌊
d
r

⌋
+ d

g + 1− γ(r, d) +
ö
−2

√
−ρ(g, r, d)

ù
else.

Proof. Note that d ≤ g− 1 is equivalent to r = min{r, g− d+ r− 1}, hence r = r′. For fixed g, r, d,
we observe that ρk(g, r, d) is a non-increasing function of k, as can be seen by writing

ρk(g, r, d) = max
ℓ∈{0,...,r}

ρ(g, r − ℓ, d)− ℓk = max
ℓ∈{0,...,r}

ρ(g, r, d) + (g − k − γ(r, d) + 1) ℓ− ℓ2.

In particular, ρk(g, r, d) is a maximum over values of a concave down parabola. The maximum of
this parabola (over all real values of ℓ) is attained at

ℓ∗ :=
g − k − γ(r, d) + 1

2
.

Thus the maximum of the parabola over our range of integers occurs at ℓ = ⌈ℓ∗⌉ if 0 ≤ ℓ∗ ≤ r.
Otherwise the maximum of is attained at ℓ = 0 (if ℓ∗ < 0) or at ℓ = r (if ℓ∗ > r).

We now treat each of the two cases in the statement. First suppose g+ 1 > ⌊dr ⌋+ d. If k = ⌊dr ⌋,
then k < g + 1− d, so ℓ∗ > r and one checks ρk(g, r, d) = ρ(g, 0, d)− rk = d− rk ≥ 0. Meanwhile,
if k = ⌊dr ⌋+1, then k ≤ g+1− d, so ℓ∗ ≥ r. Hence, ρk(g, r, d) = ρ(g, 0, d)− rk = d− rk < 0. Since

ρk(g, r, d) is non-increasing, it follows that κ(g, r, d) = ⌊dr ⌋.
Now suppose g + 1 ≤ ⌊dr ⌋+ d. In this case, we can bound

−ρ(g, r, d) = (r + 1)(g − d+ r)− g = r(g − d)− d+ r2 + r

≤ r

Åõ
d

r

û
− 1

ã
− d+ r2 + r = r

õ
d

r

û
− d+ r2

= d− (d mod r)− d+ r2 ≤ r2

where (d mod r) denotes the remainder after dividing d by r and where we remark the identity

r
⌊
d
r

⌋
= d − (d mod r). Thus

√
−ρ(g, r, d) ≤ r and it follows that the claimed value for κ(g, r, d)

lies in the range k ≥ g + 1− d. If k ≥ g + 1− d, then ℓ∗ ≤ r, so

ρk(g, r, d) = ρ(g, r, d) + 2ℓ∗⌈ℓ∗⌉ − ⌈ℓ∗⌉2.
If ℓ∗ is an integer then ρk(g, r, d) ≥ 0 is equivalent to (ℓ∗)2 ≥ −ρ(g, r, d), which in turn is equivalent
to

k ≤ g + 1− γ(r, d)− 2
»
−ρ(g, r, d).

Otherwise ⌈ℓ∗⌉ = ℓ∗ + 1
2 , so ρk(g, r, d) ≥ 0 is equivalent to

ρ(g, r, d) + 2ℓ∗(ℓ∗ + 1
2)− (ℓ∗ + 1

2)
2 ≥ 0

which in turn is equivalent to (ℓ∗)2 ≥ −ρ(g, r, d)− 1
4 . In this case, we obtain the bound

k ≤ g + 1− γ(r, d)− 2
»

−ρ(g, r, d)− 1
4 .

The result now follows from Lemma 2.6 below. □

Lemma 2.6. For any integer n > 0, we have ⌊−2
√
n⌋ =

⌊
−2
»

n− 1
4

⌋
.

Proof. We see that
⌈
2
»

n− 1
4

⌉
≤ ⌈2√n⌉. Suppose they are not equal. Then there is an m > 0

such that 2
»
n− 1

4 ≤ m < 2
√
n. Squaring the inequalities gives 4n − 1 ≤ m2 < 4n, whereby

m2 = 4n− 1. However, since m2 ≡ 0, 1 mod 4, we arrive at a contradiction. □
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2.1. Genus 20 and 21. Using Proposition 2.2, we prove Conjecture 1 in genus 20 and reduce the
genus 21 case to a single non-containment.

In genus 20, the expected maximal Brill–Noether loci are M1
20,10, M2

20,15, M3
20,17, M4

20,19.

Theorem 2.7. The Maximal Brill–Noether Loci Conjecture, Conjecture 1, holds in genus 20.

Proof. In [1], Conjecture 1 for g = 20 was reduced to proving M3
20,17 ⊈ M4

20,19. We compute

κ(20, 3, 17) = 6 > 5 = κ(20, 4, 19),

whereby Proposition 2.2 gives the desired non-containment. □

In genus 21, the expected maximal Brill–Noether loci are M1
21,11, M2

21,15, M3
21,18, M4

21,20. We

summarize the known non-containments without proof, as they follow directly from [1] and Propo-
sition 2.2.

Theorem 2.8. In genus 21, the loci M1
21,11, M2

21,15, M4
21,20 are maximal. There are also non-

containments

• M3
21,18 ⊈ M1

21,11 and

• M3
21,18 ⊈ M2

21,15.

Remark 2.9. To verify that Conjecture 1 holds in genus 21 the only remaining non-containment
is M3

21,18 ⊈ M4
21,20

3. Applications to Brill–Noether loci

We apply Proposition 2.2 to prove new non-containments between Brill–Noether loci. We first
collect a few observations about ρ and γ for Brill–Noether loci. As κ depends explicitly on γ and
ρ, it is natural to ask if γ and ρ are sufficient to numerically identify a grd.

Proposition 3.1. Let g, r, d, s, e be positive integers. If ρ(g, r, d) = ρ(g, s, e) and γ(r, d) = γ(s, e),
then either

(i) r = s and d = e, or
(ii) s = g − d+ r − 1 and e = 2g − 2− d.

Proof. Since γ(r, d) = γ(s, e), writing s = r + δ gives e = d+ 2δ. Simplifying the expression for ρ,
we find

ρ(g, r, d) = ρ(g, r + δ, d+ 2δ) = ρ(g, r, d) + δ(d− g + 1) + δ2.

Hence we find that either δ = 0 and (i) holds, or δ = g − d− 1 and (ii) holds. □

Remark 3.2. Thus two complete linear systems of type grd and gse are of the same type or of Serre
dual type (numerically, gse = KC − grd) if and only if ρ(g, r, d) = ρ(g, s, e) and γ(r, d) = γ(s, e). In
particular, distinct Brill–Noether loci with the same ρ will not have the same γ, and vice versa.

For Brill–Noether loci with the same ρ, Proposition 2.2 easily gives one non-containment. A
similar result was recently proved by Teixidor i Bigas in [22].

Corollary 3.3. Suppose ρ(g, s, e) = ρ(g, r, d) and g + 1 ≤
⌊
d
r

⌋
+ d,

⌊
e
s

⌋
+ e. If γ(r, d) < γ(s, e),

then Mr
g,d ⊈ Ms

g,e.

As the expected codimension of a Brill–Noether locus Mr
g,d in Mg is −ρ(g, r, d), one expects

non-containments of the form Mr
g,d ⊈ Ms

g,e when ρ(g, r, d) > ρ(g, s, e). Thus it is interesting to
find non-containments of Brill–Noether loci in the other direction. We give a general statement on
when a Brill–Noether locus is not contained in Brill–Noether divisors (loci with ρ = −1).

Proposition 3.4. Suppose that ρ(g, s, e) = −1, e − 2s > d − 2r +
†
2
√

−ρ(g, r, d)
£
− 2, and

g + 1 ≤
⌊
d
r

⌋
+ d, then Mr

g,d ⊈ Ms
g,e.
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Proof. Note that if s = 1, then ρ(g, s, e) = −1 implies g + 1 ≤
⌊
e
s

⌋
+ e. Simple computations

show that when ρ(g, s, e) = −1, the condition κ(g, r, d) > κ(g, s, e) is equivalent to the condition

γ(s, e) > γ(r, d) +
†
2
√
−ρ(g, r, d)

£
− 2. □

4. Applications to expected maximal Brill–Noether loci

4.1. Formulas for expected maximal loci. For expected maximal Brill–Noether loci, one can
make the formulas for ρ and κ more explicit. Given g and r with r ≤ √

g − 1, recall that we write
dmax(g, r) for the degree d so that Mr

g,d is expected maximal, given in (1).

Lemma 4.1. Let g mod r + 1 be the non-negative representative. For an expected maximal Brill–
Noether locus Mr

g,d, we have −ρ(g, r, d) = r + 1− (g mod r + 1).

Proof. We compute

ρ(g, r, dmax(g, r)) = g − (r + 1)(g − dmax(g, r) + r)

= −gr − r2 − r + (r + 1)

Å
r − 1 +

°
gr

r + 1

§ã
= −gr − r − 1 + (r + 1)

°
gr

r + 1

§
.

Recalling the identity y
ö
x
y

ù
= x− (x mod y) for integers x and y > 0, we see that

(r + 1)

õ −gr

r + 1

û
= −gr − (−gr mod r + 1) = −gr − (g mod r + 1).

Thus

−ρ(g, r, dmax(g, r)) = r + gr + 1 + (r + 1)

õ −gr

r + 1

û
= r + gr + 1− gr − (g mod r + 1)

= r + 1− (g mod r + 1). □

With this formula for −ρ, we can simplify our formula for κ for expected maximal loci.

Proposition 4.2. For an expected maximal Brill–Noether locus Mr
g,d with r ≥ 2, we have

κ(g, r, d) = g + r + 2 +

õ −gr

r + 1

û
+
⌊
−2
»

r + 1− (g mod (r + 1))
⌋
.

Proof. We claim that if r ≥ 2, and d = dmax(g, r), then g + 1 ≤ ⌊dr ⌋+ d. Once this is established,
combining Lemma 4.1 and Proposition 2.5 and substituting d = dmax(g, r) gives the result. To
prove the claim, we let d = dmax(g, r) = r − 1 + ⌈ rg

r+1⌉ and expandõ
d

r

û
+ d =

õ
1− 1

r
+

1

r

°
rg

r + 1

§û
+ r − 1 +

°
rg

r + 1

§
> r − 1

r
− 1 +

1

r

°
rg

r + 1

§
+

°
rg

r + 1

§
≥ r − 1

r
− 1 + g ≥ 1

2
+ g.

Above, we have used that r− 1
r is increasing for r ≥ 1

2 , so the assumption r ≥ 2 means r− 1
r ≥ 2− 1

2 .

Thus, we have
⌊
d
r

⌋
+ d > 1

2 + g. Since the left-hand side is an integer, the claim follows. □
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4.2. Non-containments of Brill–Noether loci with ρ = −1,−2. One can easily check that
Brill–Noether loci with ρ = −1,−2 are expected maximal. Indeed, ρ(g, r, d+1) = ρ(g, r, d)+ r+1,
and ρ(g, r−1, d−1) = ρ(g, r, d)+g−d+r. As shown in [2, 8, 25], Brill–Noether loci with ρ = −1,−2
are irreducible. Thus to show that such Brill–Noether loci have distinct support, it suffices to show
one non-containment. Choi, Choi, and Kim [2, 4] prove exactly such non-containments. They also
give various non-containments of the form Mr

g,d ⊈ Ms
g,e when ρ(g, r, d) = −2 and ρ(g, s, e) = −1.

We provide new proofs of these non-containments using κ.

Theorem 4.3. Let s ̸= r and ρ(g, r, d) = ρ(g, s, e) ∈ {−1,−2}, then Mr
g,d and Ms

g,e are not
contained in each other.

Proof. If r = 1 or s = 1, then this follows from [1, Proposition 1.6]. Thus we may assume r, s ≥ 2.
The proof of Proposition 4.2 shows that g + 1 ≤

⌊
d
r

⌋
+ d,

⌊
s
e

⌋
+ s. The result now follows from

Corollary 3.3. □

Theorem 4.4. Suppose ρ(g, s, e) = −1, ρ(g, r, d) = −2, and e−2s > d−2r+1, then Mr
g,d ⊈ Ms

g,e.

Proof. The case r = 1 follows from [1, Proposition 1.6] without the assumption that e − 2s >
d − 2r + 1. Hence we may assume r ≥ 2, whereby the proof of Proposition 4.2 implies that
g + 1 ≤

⌊
d
r

⌋
+ d.

If s = 1, then ρ(g, s, e) = −1 implies that g + 1 ≤
⌊
e
s

⌋
+ e. Thus for any s we have κ(g, s, e) =

g + 1− γ(s, e)− 2. The result now follows from Proposition 3.4. □

Remark 4.5. We note that this slightly improves the bound from [2, Corollary 3.6].

Remark 4.6. In [22, Example 3.2], potential containments of expected maximal Brill–Noether loci
of the form Mr

g,d ⊆ Ms
g,e with ρ(g, r, d) = −2 and ρ(g, s, e) = −1 are given. We briefly recall two

such examples, and show that Proposition 3.4 does not address these potential containments.
For the potential containment of the form Mα−1

2α2+α−2,2α2−4
⊆ Mα

2α2+α−2,2α2−1, computing κ

shows that the Brill–Noether loci both have κ = 3α − 2, hence other techniques are required to
prove this non-containment.

For the potential containment of the form Mα−1
α2−2,α2−3

⊆ Mα−2
α2−2,α2−5

, computing κ shows that

κ(α2−2, α−1, α2−3) = 2α−3, while κ(α2−2, α−2, α2−5) = 2α−2. Thus Proposition 2.2 gives
a non-containment Mα−2

α2−2,α2−5
⊈ Mα−1

α2−2,α2−3
(which already follows for dimension reasons), but

cannot show non-containment in the other direction.

4.3. Non-containments of expected maximal Brill–Noether loci. For the expected maximal
loci Mr

g, we have that r ≤
⌊√

g − 1
2

⌋
by Lemma 1.1, and that κ is generally a decreasing function

of r. However, it is not strictly decreasing (see Figure 1). Thus, one expects Proposition 2.2 would
generally give non-containments Mr

g ⊈ Ms
g for r < s, but to prove such results, we need to control

the variation of κ.
The first step is to give the following bounds on κ, pictured by the orange and green curves in

Figure 1.

Lemma 4.7. For an expected maximal Brill–Noether locus Mr
g,d, the following inequalities hold.

(i) κ(g, r, d) ≤ g
r+1 + r.

(ii) κ(g, r, d) > g
r+1 + r − 2

√
r + 1.

Proof. When r = 1, we have κ(g, 1, dmax(g, 1)) = dmax(g, 1) =
⌈g
2

⌉
, which satisfies the bounds in

(i) and (ii). We thus assume r ≥ 2.
To prove (i), we first observe that since −ρ ≥ 1, we have −2

√−ρ ≤ −2. We also trivially haveö
−gr
r+1

ù
≤ −gr

r+1 , whence (i) follows from Proposition 4.2.
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2 3 4 5 6 7 8 9

r

15

20

25

30

35

g
r+1 + r

κ
g

r+1 + r − 2
√
r + 1

(a) g = 96

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

r

40

60

80

100

120

140

160 g
r+1 + r

κ
g

r+1 + r − 2
√
r + 1

(b) g = 479

Figure 1. Plot of κ(g, r, dmax(g, r)).

To prove (ii), we make similar observations. We first note that since r+1−(g mod r+1) ≤ r+1,

we have −2
√

r + 1− (g mod (r + 1)) ≥ −2
√
r + 1, thus⌊

−2
»

r + 1− (g mod (r + 1))
⌋
≥
ö
−2

√
r + 1

ù
> −2

√
r + 1− 1.

Trivially we have ⌊−gr
r+1⌋ >

−gr
r+1 − 1, whence (ii) follows from Proposition 4.2. □

These bounds give rise to the following criterion for non-containments.

Proposition 4.8. Let δ ≥ 1. If

f(g, r, δ) := (r + 1)δ2 +
Ä
(r + 1)(r + 1 + 2

√
r + 1)− g

ä
δ + 2(r + 1)2

√
r + 1 ≤ 0,

then Mr
g ⊈ Mr+δ

g .

Proof. The inequality f(g, r, δ) ≤ 0 is equivalent to

g

r + 1
+ r − 2

√
r + 1 ≥ g

r + δ + 1
+ r + δ.

The result then follows from Lemma 4.7 and Proposition 2.2. □

Considering f(g, r, δ) as a quadratic polynomial in δ, we notice that in the limit of large g,
the two roots of f(g, r, δ) tend to 0 and g. Thus, for g sufficiently large, f(g, r, δ) ≤ 0 for all
1 ≤ δ ≤ √

g. Since expected maximal loci Ms
g have s ≤ ⌊√g − 1

2⌋ by Lemma 1.1, this implies the
non-containment Mr

g ̸⊆ Ms
g for all s > r. Below we provide an explicit bound on how large g must

be in terms of r to achieve all such non-containments.

Theorem 4.9. Fix r ≥ 2. If

g ≥ 4(r + 1)5/2 + (r + 1)2 + 2(r + 1)3/2,

then Mr
g ⊈ Ms

g for all s > r.

Proof. Let α =
√
r + 1, so that

f(g, r, δ) = α2δ2 + (α2(α2 + 2α)− g)δ + 2α5.
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Setting m = 1
α2 (g − α2(α2 + 2α)), we have

1

α2
f(g, r, δ) = δ2 −mδ + 2α3.

Thus, the roots of f(g, r, δ) are

δ± =
1

2
(m±m)∓ 1

2
m(1−

»
1− 8α3/m2).

By Proposition 4.8, it suffices to show that δ− ≤ 1 and δ+ ≥ √
g−1. Indeed, if so, then f(g, r, δ) ≤ 0

for all δ ≤ √
g − 1, which implies all desired non-containments.

Note that for 0 ≤ x ≤ 1 we have 1− x ≤
√
1− x, so 1−

√
1− x ≤ x. Thus,

1

2
m(1−

»
1− 8α3/m2) ≤ 4α3

m
.

If g ≥ 4α5 + α4 + 2α3, then m ≥ 4α3. It follows that δ− ≤ 1 and δ+ ≥ m− 1. It thus remains to
show that m ≥ √

g, equivalently m2 ≥ g, or equivalently

g2 − (3α4 + 4α3)g + α4(α2 + 2α)2 ≥ 0.

The larger root of this quadratic polynomial in g is at

3α4 + 4α3 +
√
5α8 + 8α7

2
,

which one readily checks is less than 4α5 + α4 + 2α3 for all α ≥ 1. □

We have now shown that for each r, there exists a smallest G(r) such that

(4) κ(g, r, dmax(g, r)) > κ(g, s, dmax(g, s))

for all g ≥ G(r) and r < s ≤
⌊√

g − 1
2

⌋
. Theorem 4.9 gives an upper bound for G(r), but it

is not optimal. Nevertheless, for any fixed r, one can easily check for each of the finitely many
g ≤ 4(r+1)5/2+(r+1)2+2(r+1)3/2 if (4) holds for all s > r. We summarize the resulting values
of G(r) for low r below.

r 2 3 4 5 6 7 8 9 10
G(r) 28 50 96 140 232 306 390 561 684

Remark 4.10. If we fix r ≥ 2, then there also exist various g < G(r) such that (4) holds for all
s > r. For example, (4) holds for all s > r when

• r = 2 and g /∈ {10, 11, 12, 15, 18, 19, 24, 27};
• r = 3 and g /∈ {17, 18, 19, 21, 24, 28, 29, 33, 34, 41, 44, 49};
• r = 4 and g /∈ {26, 27, 28, 29, 30, 32, 35, 40, 41, 45, 46, 47, 48, 50, 52, 53, 55, 62, 65, 70, 71, 77, 95}.

Corollary 4.11. Except for g = 7, 9, and possibly g = 24, 27, the expected maximal Brill–Noether
locus M2

g is maximal.

Proof. Write M2
g = M2

g,d, so that d = dmax(g, 2). The argument for [1, Lemma 6.7 (iii)] shows

that for a polarized K3 surface (S,H) of genus g ≥ 14 with Picard group Pic(S) = ZH ⊕ ZL with
H.L = d, and L2 = 2, a smooth curve C ∈ |H| has general Clifford index, hence general gonality.

Indeed, if γ(C) <
ö
g−1
2

ù
, one first appeals to [16, Lemma 8.3] and [21, Theorem 4.2] and then uses

the argument of [1, Lemma 6.7 (iii)]. We claim that C also has a g2d, hence M2
g ⊈ M1

g. Clearly,
L|C is a gsd for some s, and it suffices to show that s ≥ 2, as then by adding or subtracting points
(as in the trivial containments of Brill–Noether loci), C will have a g2d.
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To this end, remark that since L.H > 0, we have h2(S,L) = h0(S,L∨) = 0. Thus applying

Riemann–Roch, we see h0(S,L) ≥ 2+ L2

2 ≥ 3. Note also that (L−H).H < 0, so h0(S,L−H) = 0.
Now taking the long exact sequence in cohomology associated to the short exact sequence

0 → L⊗ OS(−C) → L → L⊗ OC → 0,

shows that h0(C,L|C) ≥ h0(S,L) ≥ 3, whereby s ≥ 2, as desired.
Thus M2

g ⊈ M1
g as soon as g ≥ 14. Likewise, as shown in [1, §6], for 6 ≤ g ≤ 13, ex-

cept for g = 7, 9, we also have M2
g ⊈ M1

g. As in the above remark, except for possibly g ∈
{10, 11, 12, 15, 18, 19, 24, 27}, the expected maximal Brill–Noether locus M2

g is not contained in

any other expected maximal Brill–Noether locus. From [1], the locus M2
g is already known to be

maximal when g = 8, 10, 11, 12, 15, 18, 19. □

Remark 4.12. More generally, a similar argument involving K3 surfaces with H.L = dmax(g, r)
and L2 = 2r − 2 shows that Mr

g ⊈ M1
g for g ≥ 14.

Remark 4.13. In case κ(g, r, dmax(g, r)) = κ(g, s, dmax(g, s)), other techniques are required to
prove non-containments. For example, in genus 24, κ(24, 2, 17) = κ(24, 4, 23). Since ρ(24, 2, 17) =
−3 and ρ(24, 4, 23) = −1, we have a non-containment M4

24,23 ⊈ M2
24,17 for dimension reasons. The

reverse containment is unknown.
Similarly, in genus 27, κ(27, 2, 19) = κ(27, 3, 23). As ρ(27, 2, 19) = −3 and ρ(27, 3, 23) = −1, we

have a non-containment M3
27,23 ⊈ M2

27,19. The reverse non-containment is unknown.
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