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Abstract. We study the arithmetic of the K3 category associated to a cubic
fourfold over a non-algebraically closed field k, specifically, the Galois representa-
tion on its `-adic Mukai realization. For k a finite field, we define the zeta function
of a K3 category, an invariant under Fourier–Mukai equivalence. This invariant
can be used to study the geometricity of the K3 category over non-algebraically
closed fields. One interesting outcome is that the zeta function does not always
detect the geometricity of the K3 category. We also give a nontrivial restriction
on the possible Weil polynomials of the K3 category of a cubic fourfold.

Introduction

Given a smooth cubic fourfold X ⊂ P5 over a field k, Kuznetsov [36] has estab-
lished a semiorthogonal decomposition of its derived category

Db(X) = 〈AX ,O,O(1),O(2)〉.
The admissible subcategory AX is known as the K3 category of the cubic fourfold, cf.
[29], in light of Kuzetsov’s proof that AX is a Calabi–Yau category of dimension 2
in the sense of Kontsevich [35] and has the same Hochschild cohomology as a K3
surface. Such categories are called noncommutative K3 surfaces, see [41, §2.2]. We
say that AX is geometric over k if there is a k-linear equivalence between AX and
Db(S) for a K3 surface S defined over k. When k = C, Kuznetsov conjectured
that X is rational if and only if AX is geometric. As evidence for his conjecture,
Kuznetsov checked it for the known families of rational cubic fourfolds, and more
recent work, e.g., [3], [4], [6], [10], has established additional cases and shown the
conjecture to be equivalent to a Hodge-theoretic characterization of rationality for
cubic fourfolds advocated by Hassett and Harris.

In this note, we introduce point counting on X as a tool to study the geometricity
of the K3 category AX . Specifically, for X defined over a finite field k, we define
the notion of point count |AX(k)| of the K3-category AX , which is an integer that is
a derived invariant of AX under Fourier–Mukai equivalence. In the geometric case,
when AX ∼= Db(S) for a K3 surface S defined over k, we have that |AX(k)| = |S(k)|
recovers the classical point count of S. But in general, the point count of AX may
be negative or fail to satisfy other necessary growth conditions on the point counts
of varieties.

More generally, we define point counts and zeta functions for any noncommutative
surface, see §1. Our main motivation is that point counts can obstruct geometricity
of AX . Indeed, when X be a cubic fourfold over Q with good reduction at p, and
such that AXFp is not geometric over Fp, then AX is not geometric over Zp, i.e., there

is no Zp-linear equivalence AX ∼= Db(S) for smooth proper models X and S of X
and S over Zp, respectively. In this setting, it is expected that any Fourier–Mukai

equivalence AX ∼= Db(S) over Q spreads to a Fourier–Mukai equivalence over Zp as
long as S has good reduction at p, see [44, Desideratum 3.4.4]. This would imply
that whenever AXFp is not geometric over Fp, e.g., has negative point counts, then

X cannot admit any associated K3 surface over Q with good reduction at p.
1
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Using the census of cubic fourfolds over F2 obtained in [7], we can give a lower
bound on the number of isomorphism classes of cubic fourfolds X over F2 whose
K3 category is not geometric, either because it has negative point counts (i.e.,
|AX(F2n)| < 0 for some n ≥ 1) or because it fails the field extension growth condition
(i.e., |AX(F2mn)| < |AX(F2n)| for some m,n ≥ 1).

Theorem 1. There exist 2662 isomorphism classes of smooth cubic fourfolds over
F2, of which 436 are ordinary, and exactly one is Noether–Lefschetz general, whose
K3 categories have negative point counts. There exist 2343 isomorphism classes of
smooth cubic fourfolds over F2, of which 1084 are ordinary, and 140 are Noether–
Lefschetz general, whose K3 categories have nonnegative point counts but fail the
field extension growth condition. In particular, 0.47% of smooth cubic fourfolds over
F2 have K3 category with either negative point counts or failure of field extension
growth.

Addington informed us that he already observed the existence of K3 categories with
negative point counts in the course of computer computations for [1].

On the other hand, we expect point counting alone can sometimes fail to obstruct
geometricity. As evidence, we show the following (see Theorem 4.1).

Theorem 2. There exist special cubic fourfolds X over Q such that:

• X has good reduction at 2 and AXF2
has all positive point counts with field

extension growth conditions, and
• AXC is not equivalent to Db(S, α) for any K3 surface S defined over C and

any Brauer class α ∈ Br(S).

In addition, about 99.87% of Noether–Lefschetz general cubic fourfold over F2 satisfy
the conditions in Theorem 2 (see [29, Theorem 1.4]). The existence of special such
cubic fourfolds indicate that a potential Honda–Tate theory for K3 surfaces is still
quite mysterious, as our current necessary conditions (e.g., in [31]) on the zeta
function of a K3 surface hold for such potentially noncommutative examples.

Our notion of point count of a K3 category may have additional applications
in the formulation of “Honda-Tate theory for noncommutative K3 surfaces.” As
a demonstration of the potential applications, we first note that if AX is the K3

category of a cubic fourfold X, then the categorical Hilbert squareA
[2]
X has point-

count arising from geometry: there is an equality of zeta functions of t A
[2]
X and

of the Fano variety F (X) of lines of a cubic fourfold X over a finite field. We
provide a proof of this below (Propositionn 2.9), and it is deducible from work of
Belmans–Fu–Raedschelders [11] (cf. [30, §8]), see Remark 2.11. The geometricity
of the Hilbert square gives a nontrivial condition on whether a zeta function can
be the K3 category of a cubic fourfold. Out of the 2, 971, 182 polynomials in [31,
Computation 3a] which are potentially the Weil polynomial of a noncommutative
K3 surface over F2, there are 31256 that cannot arise from a cubic fourfold because
of failure of field-extension growth of Hilbert square point counts. See Section 3 for
a more detailed discussion of Honda-Tate theory.

Several authors have considered derived categories and point counts over finite
fields. In [47, Conj. 1], Orlov conjectured that derived equivalent varieties have
the same effective Chow motive, and hence should have the same point counts. For
any variety with ample or anti-ample canonical class, derived equivalence implies
isomorphism [13], hence the zeta function is a derived invariant. Several other cases
of derived invariance of point counts have been established: by Antieau, Krashen,
and Ward for curves of genus 1 [5], for K3 surfaces by Lieblich and Olsson [40],
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and for all abelian varieties and all smooth projective surfaces and threefolds by
Honigs [26, 27]. This derived invariance of point counts is especially surprising for
threefolds, since the Hodge numbers of a threefold are not a derived invariant in
positive characteristic [2].

The key to proving the derived invariance of point counts in these known cases is to
consider the action of Frobenius on the `-adic Mukai realization ⊕iH i

ét(X,Q`(d i2e)),
a Galois-module that only depends on the derived equivalence class of X. More
specifically, let k be a finite field with q elements, let X be a smooth projective
k-variety, and let X = Xk. Let F : X → X denote the relative q-power Frobenius.
Since X is smooth and projective, the action of F ∗ on étale cohomology satisfies the
Grothendieck–Lefschetz trace formula

|X(Fq)| =
2 dimX∑
i=0

(−1)itr(F ∗ | H i
ét(X,Q`)).

The cohomology of low dimensional varieties is simple enough that one can thus
extract, from the action of F ∗ on the `-adic Mukai realization, just enough infor-
mation about the eigenvalues of Frobenius on the individual H i to conclude derived
invariance of point counts. Our definition of the point counts of a K3 category is
inspired by this idea.

In this note, we first introduce the notion of point counts of a Calabi–Yau cate-
gory of dimension 2 in Section 1. We prove some basic properties, including Fourier–
Mukai invariance. Then, in Section 2, we apply our notion to the study of cubic
fourfolds and their associated noncommutative K3s. We give examples of noncom-
mutative K3s defined over F2 with negative point counts, which is an obstruction to
geometricity of the K3 category. We also consider the relationship between the Fano
variety of lines on the cubic and the Hilbert square of its K3 category, finding that
these point counts will always agree. Finally, in Section 4, we give an example of a
nonadmissible special cubic fourfold over Q whose associated noncommutative K3
modulo 2 has the zeta function of a usual K3 surface, indicating that zeta functions
are too coarse to distinguish admissible and nonadmissible cubics in general.

The authors wish to thank Nick Addington, Sarah Frei, Brendan Hassett, Richard
Haburcak, Daniel Huybrechts, Bruno Kahn, Alex Perry, Laura Pertusi, Franco Rota,
John Voight, and Xiaolei Zhao. The first author received partial support from Si-
mons Foundation grant 712097, National Science Foundation grant DMS-2200845,
and a Walter and Constance Burke Award and a Senior Faculty Grant from Dart-
mouth College. Part of this work was completed while the second author was a guest
researcher at the Junior Trimester Program in Algebraic Geometry at the Haus-
dorff Institute for Mathematics, funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence Strategy—EXC-
2047/1—390685813.

1. Galois modules from admissible subcategories

Let X be a smooth projective variety defined over a perfect field k and ` a prime
not equal to the characteristic of k. Let ιC : C ↪→ Db(X) denote the embedding
of some admissible subcategory of the bounded derived category of X, and denote
by πC : Db(X) → C the left adjoint of ιC. Suppose further that this functor ιC is
k-linear. From the derived category of X, one can recover the even and odd Mukai
structures:
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H̃even(X) :=
⊕
i

H2i
ét (X,Q`(i)), H̃

odd(X) :=
⊕
i

H2i−1
ét (X,Q`(i))

and the total Mukai structure

H̃(X) := H̃even(X)⊕ H̃odd(X).

Definition 1.1. We define the `-adic Galois module of a k-linear admissible embed-
ding of a subcategory C ↪→ Db(X) to be the Gk-submodule of H̃(X) which is the

image of the cohomological Fourier–Mukai transform (ιC ◦ πC)H : H̃(X) → H̃(X).

We denote this submodule by H̃(C).

Remark 1.2. We have defined H̃(C) as a Q`-vector space; we do not concern our-
selves with defining an underlying integral structure in the present work.

Remark 1.3. Note that the above definitions depend a priori on the embedding

C ↪→ Db(X). We will often fix an embedding C ↪→ Db(X) and refer to H̃(C) as sim-
ply the Galois module associated to C, with the embedding implicitly understood.

We will soon see however that H̃(C) only depends on the embedding C→ Db(X) up
to Fourier–Mukai equivalence of C. The `-adic realization functor from noncommu-
tative motives, see e.g., [12, §3.7], should provide an alternative way of constructing

H̃(C) independent of the embedding.

Definition 1.4. Given a Q` vector space V with an action of a linear operator ϕ,
we define the associated L-polynomial by

L(T ;ϕ) := det(Id− ϕT ).

Given an admissible embedding C ↪→ Db(X), we define the L-polynomial

L
H̃(C)

(T ) := L(T ;F ∗).

associated to the action of F ∗ on H̃(C).

1.1. Point counts on a noncommutative K3 surface. If one views C as a
noncommutative variety, is there a meaningful definition for C(Fq) or |C(Fq)|? Un-
fortunately, there is not in general an obvious way to compute Lefschetz traces from

H̃(C), because the cohmological Fourier–Mukai transform in general does not pre-
serve cohomological degree. We still manage to define a notion of “point count”
below, and this notion will agree with classical point counts when C is the bounded
derived category of a K3 surface.

For the rest of this section, let k be a field with q elements and X a smooth
projective variety over k. Let C ↪→ Db(X) be an admissible subcategory defined
over a finite field k. Assume C is a Calabi-Yau-2 category (so the shift [2] is a Serre
functor) with the same Hochschild cohomology as the bounded derived category of
a K3 surface, what we often call a noncommutative K3 surface, see [41, §2.2].

Definition 1.5. The zeta function of a noncommutative K3 surface C, denoted
ZC(T ), is the rational function

ZC(T ) :=
(1− qT )2

(1− T ) · L
H̃(C)

(qT ) · (1− q2T )
.

For K ⊇ k a field extension of degree n, define the K-point count of C by

|C(K)| := nan,

where an is the coefficient of Tn in the formal series expansion of log(ZC(T )).
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These point counts are rational numbers, but are not necessarily integral or pos-
itive.

Remark 1.6. If we further assume that C is an `-adic noncommutative K3 surface,
i.e., H̃(C) admits a decomposition H0⊕H2⊕H4, where H0 = H4 = Q` have trivial
Galois action, then L

H̃(C)
(T ) has two factors of (1−T ) corresponding to H0 and H4,

and LC(T ) := L
H̃(C)

/(1 − T )2 is a polynomial that corresponds to the H2. This is

the case for the K3 category AX of a cubic fourfold X since AX is the semiorthogonal
complement of an exceptional collection, and we wonder whether it holds for every
noncommutative K3 surface.

1.2. FM-invariance. By a Fourier–Mukai equivalence between admissible subcate-
gories C ↪→ Db(X) and C′ ↪→ Db(X ′), we mean an exact equivalence C ∼= C′ which
appears in the factorization of a Fourier–Mukai transform between X and X ′:

Db(X)
πC−−→ C

∼−→ C′
ιC′−−→ Db(X ′).

Our definition of point count should be invariant under such equivalences. This
would be automatic if C → C′ were induced from an equivalence Db(X) → Db(X ′),
but in general there can be equivalences of admissible subcategories that don’t arise
from an equivalence of their ambient derived categories. Still, we can show that

Fourier–Mukai equivalences induce isomorphisms H̃(CX)→ H̃(CX′).

Proposition 1.7. If C → C′ is a k-linear Fourier–Mukai equivalence, induced by

some kernel E ∈ Db(X×X ′) defined over k, then H̃(C)→ H̃(C′) is an isomorphism
of Galois modules.

Proof. The FM-equivalence F : C→ C fits into the sequence of exact functors

Db(X)
πX−−→ C→ C′

ιX′−−→ Db(X ′)

whose overall composition is Fourier–Mukai. Let E ∈ Db(X×X ′) be the kernel of the
composition, inducing the exact functor ΦE : Db(X)→ Db(X ′), which by hypothesis
is defined over k. Then the right adjoint functor ΦER : Db(X) → Db(X ′) induces
an inverse k-linear equivalence C′ → C. The Fourier–Mukai kernels induce maps

ΦH
E : H̃(X) → H̃(X ′) and ΦH

ER : H̃(X ′) → H̃(X); both of these kernels are defined
over k and are therefore compatible with the action of Frobenius, in the sense that
F ∗E = E Since ΦE ◦ ΦER restricted to C is naturally isomorphic to the identity

on C, then we have that the cohomological transform ΦH
E ◦ ΦH

ER : H̃(X)→ H̃(X) is

compatible with Froebnius and acts as the identity on H̃(C), and thus ΦH
E restricted

to H̃(C) yields an isomorphism of Galois modules H̃(C)→ H̃(C′). �

Since our definition of |C(Fq)| depends only on the Galois module H̃(C), we
conclude the FM-invariance of point counts.

Corollary 1.8. Let k be a finite field. If there is k-linear exact equivalence C→ C′

is Fourier–Mukai, then ZC = ZC′ and |C(K)| = |C′(K)| for any finite extension
K ⊇ k.

1.3. Geometricity of K3 categories. Point-counting can help detect whether C
is a K3 surface over k.

Corollary 1.9. Let k be a finite field. If C ∼= Db(S, α) is a k-linear FM equivalence
for some twisted K3 surface (S, α) defined over k, then ZC = ZS; in particular,
|C(K)| = |S(K)| for any finite extension K ⊇ k.
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Proof. As in the proof of Proposition 1.7, there is an isomorphism of Galois modules

H̃(C) ∼= H̃(S, α), and since these are Q`-vector spaces we further have an isomor-

phism of Galois modules H̃(S, α) = H̃(S), from which one recovers the point counts
of S [26]. �

The main application of the above corollary is to obstruct geometricity of the
CY2 category C: if the point counts are nonintegral or negative, then C cannot be
derived equivalent over k to a (twisted) K3 surface.

2. The K3 category of a cubic fourfold

In the case where X is a cubic fourfold defined over a finite field k with q elements,
and AX ↪→ Db(X) is the admissible embedding of its K3 category into its derived
category, we wish to study the point counts of AX .

Let L4(T ) = det(Id−TF ∗ | H4
ét(X,Q`(2))) denote the L-polynomial on the middle

cohomology of X, which is a polynomial of degree 23 whose roots have complex
absolute value 1. Let L4,pr(T ) = L4(T )/(1− T ) denote the factor corresponding to
the primitive cohomology. Then we have

ZAX
(T ) =

1− qT
(1− T )L4(qT )(1− q2T )

=
1

(1− T )L4,pr(qT )(1− q2T )
.

We remark that this gives the following formula for the point counts of AX in terms
of the point counts of X

|AX(Fqn)| = |X(Fqn)| − 1− q2n − q4n

qn

and inversely, a formula for the point counts of X in terms of those for AX

(1) |X(Fqn)| = 1 + qn|AX(Fqn)|+ q2n + q4n

These formulae, together with Chevalley–Warning–Ax theorem [9], which gives that
|X(Fq)| ≡ 1 (mod q), imply the following.

Lemma 2.1. Let AX ↪→ Db(X) be the K3 category of a cubic fourfold X over a
finite field k, and let K/k be a finite extension. Then the point count |AX(K)| is an
integer. �

Remark 2.2. Li–Pertusi–Zhao [38] show, at least over the complex numbers, that
any exact equivalence of K3 categories of cubic fourfolds is Fourier–Mukai. If one
could show this over finite fields, then consequently the point counts of AX would
be independent of the admissible embedding. The missing ingredient over a finite
field is the nonemptiness of a certain moduli space of objects in the K3 category,
but this would take us too far afield from our primary focus.

2.1. Negative point counts and obstructions to geometricity. In the data-
base [8], we have examples of cubic fourfolds over F2 whose K3 categories have some
negative point counts |AX(F2)| < 0. This could be indicative of some associated
K3 defined over some larger base extension, or it could indicate that there is no
associated K3 even geometrically. In any case, we can definitively say that these
cubics have no associated K3 defined over F2.

Computation 2.3. There are 2662 cubic fourfolds up to isomorphism over F2 for
which |AX(K)| < 0 for some finite extension of K, and hence do not have associated
K3 over the field F2.
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In fact, all but one of these cubics is Noether–Lefschetz special, demonstrating
that negative point counts can be used to exhibit explicit special cubic fourfolds
with no associated K3 over F2.

Computation 2.4. There is a unique F2-isomorphism class of smooth cubic four-
fold X defined over F2 that is Noether–Lefschetz general and whose K3 category AX
has negative point counts, represented by

x2
1x2 + x2

1x6 + x1x2x6 + x1x3x5 + x1x
2
4 + x1x

2
5 + x1x

2
6 + x3

2 + x2
2x5 + x2

2x6

+x2x3x4 + x2x
2
5 + x3

3 + x3x
2
6 + x2

4x5 + x4x
2
6 + x3

6.

Remark 2.5. There are 436 among those from Computation 2.3 which are ordinary.
The cubic fourfold of Computation 2.4 is a non-ordinary cubic fourfold (of height 7).

Remark 2.6. We also found that there are a handful of cubics for which the F2-point
counts of AX are positive but for which |AX(F2m)| < 0 for some m > 1.

Another natural condition on the point counts for a K3 surface S, considered by
Kedlaya–Sutherland, is that |S(Fqmn)| ≥ |S(Fqn)| for all m,n ≥ 1.

This provides, for a cubic fourfold X, an obstruction to geometricity over k.

Computation 2.7. There are 2343 cubic fourfolds over F2 that have |AX(F2k)| > 0
for all k ≥ 1 but |AX(F2mn)| < |AX(F2n)| for some m,n ≥ 1, and hence do not have
associated K3 over F2.

Remark 2.8. There are 1084 cubic fourfolds in the above computation which are
ordinary.

2.2. Hilbert schemes and Fano varieties. For X a smooth cubic fourfold defined
over the finite field k = Fq and for any finite extension Fqn ⊃ k, the point counts
of X determine the point counts of its Fano variety of lines F1(X). Precisely, we
have ([23, Corollary 5.2], [18, Equation 8]):

(2) |F1(X)(Fqn)| =
|X(Fqn)|2 − 2(1 + q4n)|X(Fqn)|+ |X(Fq2n)|

2q2n
.

On the other hand, if S[2] is the Hilbert scheme of length two subscheme on a K3
surface we have the formula

|S[2](Fqn)| =
(
|S(Fqn)|

2

)
+ |S(Fqn)|(qn + 1) +

|S(Fq2n)| − |S(Fqn)|
2

This formally motivates the following formula for the point counts of the Hilbert

square A
[2]
X of the K3 category

(3) |A[2]
X (Fqn)| :=

(
|AX(Fqn)|

2

)
+ |AX(Fqn)|(qn + 1) +

|AX(Fq2n)| − |AX(Fqn)|
2

Proposition 2.9. If X is a cubic fourfold defined over a finite field k, with K3
category AX , then there is a equality of zeta functions

Z
A
[2]
X

(T ) = ZF1(X)(T )

Proof. By the Weil conjectures, there are algebraic integers α1, . . . , α22 such that

|X(Fqn)| = 1 + qn +

22∑
j=1

αnj + q2n + q3n + q4n,
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|X(Fq2n)| = 1 + q2n +
22∑
j=1

α2n
j + q4n + q6n + q8n.

For the K3 category AX , one has

|AX(Fqn)| = 1 +
22∑
j=1

(
αj
q

)n
+ q2n,

|AX(Fq2n)| = 1 +
22∑
j=1

(
αj
q

)2n

+ q4n,

and now one can see, upon evaluation of these expressions into the formulae above,
that

|A[2]
X (Fqn)| = |F1(X)(Fqn)|.

�

Remark 2.10. Frei [20] has already shown that point counts of moduli spaces of
stable sheaves on K3 surfaces only depend on the dimension of the moduli space
and the underlying K3. Li, Pertusi, and Zhao [37] have shown that F1(X) is a moduli
space of Bridgeland stable objects in AX . Therefore, our Proposition 2.9 is evidence
that Frei’s result should extend to the noncommutative setting: the point count of a
moduli space of Bridgeland stable objects on a noncommutative K3 surface should
only depend on the category and the dimension of the moduli space.

Remark 2.11. There is in fact a categorical version of the Hilbert square of a

noncommutative variety A
[2]
X ⊂ Db(X [2]) (see [28, Remark 3.28]. By the work of

Belmans–Fu–Raedschelders [11] (see also §8 of [30]), we actually have an equality

of L-functions L(T ;F ∗ | H̃(F1(X))) and L(T ;F ∗ | H̃(A
[2]
X ))), thereby justifying our

notion of point-count for A
[2]
X .

3. Towards a Honda–Tate for K3 surfaces

Kedlaya and Sutherland [31] have initiated a program that could be called Honda–
Tate for K3 surfaces, in analogy with the classical Honda–Tate theorem [25, 49] for
abelian varieties over a finite field. In this section, we give some further details of
what this program entails and provide a few additional observations, including how
varieties “of K3-type” (such as cubic fourfolds) might play a role.

For context, we will review the classical Honda–Tate theorem in the case of abelian
varieties. For an abelian variety A of dimension g over Fq, the zeta function ζA(T )
is completely determined by, and determines, the characteristic polynomial ΦA(T )
of Frobenius on H1

ét(A,Q`) for any ` prime to q. In this case, ΦA(T ) is a Weil

polynomial of degree 2g, all of whose roots have absolute value q1/2 and must satisfy
other arithmetic conditions. Isogenous abelian varieties have the same zeta function,
and the map from isogeny classes of abelian varieties of dimension g to such Weil
polynomials is injective by a result of Tate [49]. The description of the image of the
map, i.e., the set of Weil polynomials realized by abelian varieties of dimension g,
is a result of Honda [25].

For a K3 surface S over Fq, the zeta function is given by

ζS(T ) =
1

(1− T )LS(qT )(1− q2t)



ZETA FUNCTIONS OF K3 CATEGORIES OVER FINITE FIELDS 9

where LS(T ) is the L-polynomial of Frobenius acting H2
ét(S,Q`(1)) for any ` prime

to q. In this case, LS(T ) is a Weil polynomial of degree 22, all of whose roots have
absolute value 1 and must satisfy other constraints, see Theorem 3.

There is a classical notion of isogeny of K3 surfaces S and S′ over C, namely,
an isometry ϕ : H2(S(C),Q) → H2(S′(C),Q) of rational Hodge structures with
intersection pairing. Various authors have proposed notions of isogeny between K3
surfaces over a finite field, e.g., [15] and [51]. In particular, these notions imply an

isometry ϕ : H2
ét(S,Q`) → H2

ét(S
′
,Q`) of Galois modules with intersection pairing

for all ` prime to q. In particular, isogenous K3 surfaces should have the same
Weil polynomial. Honda–Tate for K3 surfaces then consists of the following two
problems.

Problem 3.1 (Honda–Tate for K3s).

(1) “Tate for K3s” Determine whether the map from isogeny classes of K3 sur-
faces over Fq to Weil polynomials is injective.

(2) “Honda for K3s” Determine the Weil polynomials that arise from K3 surfaces
over Fq.

Tate for K3s is likely known to the experts and should follow from the semisim-
plicity of Frebenius acting on `-adic cohomology, whereas Honda for K3s seems to be
wide open, and is the subject of Kedlaya and Sutherland’s computational work [31],
as well as work by Taelman [48] and Ito [32]. In particular, Kedlaya and Sutherland
describe an algorithm to generate a list of all polynomials that could potentially
arise as Weil polynomials of K3 surfaces over a fixed finite field Fq, though it is still
unknown whether all such polynomials do arise from K3 surfaces defined over Fq.
On the other hand, Taelman and Ito prove that under mild hypotheses, every Weil
polynomial on such a list is realized by a K3 surface defined over an extension of Fq.

From the Weil conjectures and properties of crystalline cohomology, the Weil
polynomials LS(T ) must satisfy the following arithmetic constraints, see [31, 32, 48].

Theorem 3.2. Let S be a K3 surface over Fq. Then the Weil polynomial LS(T ) ∈
Q[T ] is a degree 22 polynomial, all of whose roots have complex absolute value 1,
and satisfies:

(1) Projectivity. LS(T ) has a factor of 1− T .
(2) Weil conjectures. LS(T ) ∈ Z`[T ] for all ` prime to q.
(3) Crystalline. Factor LS(T ) = LS,alg(T )LS,trc(T ) where LS,alg(T ) is the max-

imal factor all of whose roots are roots of unity. Then either S is supersin-
gular, in which case LS(T ) = LS,alg(T ), or LS,trc(T ) satisfies the following
two properties:
(a) Newton above Hodge. The Newton polygon of LS,trc(T ) ∈ Qp(T ) lies

above the Hodge polygon of the crystalline transcendental lattice of S.
(b) Transcedental. LS,trc(T ) = Qe for some e > 0 and Q ∈ Q[T ] irreducible,

where Q = Q<0Q≥0 in Qp[T ] where Q<0 is irreducible and consists of
all factors of Q of the form (1− γT ) with vp(γ) < 0.

We note that when q = p, the conditions (a) and (b) are together equivalent
to pLS(T ) ∈ Zp[T ].

(4) Nonnegative point counts. LS(T ) is consistent with |S(Fqn)| ≥ 0 for all
n ≥ 1.

(5) Field extension growth. LS(T ) is consistent with |S(Fqm)| ≥ |S(Fqn)| for all
m,n ≥ 1 with n|m.

(6) Artin–Tate. Writing LS(T ) = (1 − T )rL1(T ) with L1(1) 6= 0, we have
qL1(−1) is a square (possibly 0).
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We say that a degree 22 Weil polynomial satisfying these conditions is of K3 type
over Fq. One reasonable question is whether these conditions provide a complete
solution to Honda for K3s. To test this, Kedlaya and Sutherland in [31, Computa-
tion 3] enumerated the entire list of Weil polynomials of K3 type1 over F2, finding
1,672,565 such polynomials. They compare this list to the Weil polynomials of quar-
tic K3 surfaces over F2, which account for only about 3% of all Weil polynomials of
K3 type for q = 2. It would be a natural next step to create a census K3 surfaces
of other low degree over F2.

One could also consider a “Honda–Tate for noncommutative K3s” for the larger
class of noncommutative K3 surfaces C over a finite field Fq together with their Weil
polynomials LC(T ) introduced in Section 1.1. In this context, formulating “Tate for
noncommutative K3s” would require a notion of isogeny between noncommutative
K3 surfaces, whose details are not entirely clear, but should at least imply that
isogenous noncommutative K3 surfaces have the same Weil polynomials. In order
to resolve “Honda for noncommutative K3s” one must formulate a reasonable list
of necessary properties satisfied by Weil polynomials of noncommutative K3s, and
then ask whether these properties are sufficient.

As a concrete example, we now list some known conditions on the Weil polynomi-
als of K3 categories of cubic fourfolds, in the case q = p for simplicity. To that end,
we introduce some formal count counts associated to a noncommutative K3 surface.
In analogy with (1), we define the cubic fourfold point count of C as

|XC(Fqn)| = 1 + qn|AX(Fqn)|+ q2n + q4n

and in analogy with (3) we define the Hilbert square point count of C as

|C[2](Fqn)| =
(
|C(Fqn)|

2

)
+ |C(Fqn)|(qn + 1) +

|C(Fq2n)| − |C(Fqn)|
2

Proposition 3.3. Let C be the K3 category of a cubic fourfold over Fp. Then the
Weil polynomial LC(T ) ∈ Q[T ] is a degree 22 polynomial, all of whose roots have
complex absolute value 1, and satisfies:

(1) Weil Conjectures and Crystalline: pLC(T ) ∈ Z[T ].
(2) Nonnegative cubic fourfold point counts. LC(T ) is consistent with |XC(Fqn)| ≥

0 for all n ≥ 1.
(3) Cubic fourfold field extension growth. LC(T ) is consistent with |XC(Fqm)| ≥
|XC(Fqn)| for all m,n ≥ 1 with n|m.

(4) Nonnegative Hilbert square point counts. LC(T ) is consistent with |C[2](Fqn)| ≥
0 for all n ≥ 1.

(5) Hilbert square field extension growth. LC(T ) is consistent with |C[2](Fqm)| ≥
|C[2](Fqn)| for all m,n ≥ 1 with n|m.

(6) Artin–Tate. Writing LC(T ) = (1 − T )rL1(T ) with L1(1) 6= 0, we have
pL1(−1) is a square (possibly 0).

Proof. (1), (2), (3) come from being a factor of the cubic fourfold Weil polynomial.
(4) and (5) comes from Proposition 2.9.
(6) comes from the fact that AX is the left orthogonal to a exceptional collection

(so that LAX
(T ) differs from LX(T ) by factors of (1− T )) for p > 2 by [19] and by

[7] for p = 2. �

1The degree 21 polynomial L(T ) ∈ Z[T ] appearing in [31] is expressed in terms of our degree 22
Weil polynomial as L(T ) = qLS(T/q)/(1− T ).
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As in the case for K3 surfaces, for a noncommutative K3 surface C, we write
LC(T ) = LC,alg(T )LC,trc(T ) where LC,alg(T ) is the maximal factor all of whose roots
are roots of unity. For a K3 surface S, the Tate conjecture (which are proved in [45],
[16], [17], [42], [34], [43], [33])) implies that the geometric Picard rank of S equals the
degree of LSalg and the arithmetic Picard rank (i.e., Picard rank over Fq) of S equals
the multiplicity of (1−T ) in LSalg. One important difference in the noncommutative
setting is that LC,alg(T ) may equal 1; we call such noncommutative K3 surfaces
“purely transcendental.” Hence by analogy, purely transcendental noncommutative
K3 surfaces have “geometric Picard rank 0.” For q = 2, we can collect some statistics
about the distribution of the “arithmetic Picard rank” and “geometric Picard rank”
among Weil polynomials of degree 22 over Fq that satisfy a minimal set of necessary
conditions to be potentially realizable by a noncommutative K3 surface.

Computation 3.4. There are 5,478,058 degree 22 Weil polynomials satisfying the
“Weil conjecture and crystalline” condition from Proposition 3.3 over F2. Of these,
we record the distribution of “Picard ranks”:

geometric Picard rank 0 2 4 6 8 10

how many 74846 242700 441072 697944 762944 936736

geometric Picard rank 12 14 16 18 22 22

how many 775320 651600 442308 270180 122128 60280

arithmetic Picard rank 0 1 2 3 4 5

how many 2506876 956904 956904 349118 349118 121936

arithmetic Picard rank 6 7 8 9 10 11

how many 121936 40194 40194 12574 12574 3612

arithmetic Picard rank 12 13 14 15 16 17

how many 3612 966 966 230 230 48

arithmetic Picard rank 18 19 20 21 22

how many 48 8 8 1 1

We remark that of the 74,846 purely transcendental Weil polynomials above, only
4,294 come from K3 categories of a cubic fourfolds over F2.

4. The zeta function of a nonadmissible cubic fourfold

The goal of this section is give a particular example of a Noether–Lefschetz special
cubic fourfold X over Q with nongeometric K3 category. The example suggests that
the zeta function alone cannot be used to detect nongeometric K3 categories.

Theorem 4.1. There exists a cubic fourfold X/Z such that

(1) XQ has no associated K3 and no associated twisted K3 surface over C (i.e.,
XQ is not admissible nor twisted-admissible over C);

(2) X has good reduction at p = 2 and the specialization CH2(XQ)→ CH2(XF2
)

is an isomorphism; and
(3) the point counts of AXF2

satisfy the conditions of Theorem .

In light of the description of the point counts of AXF2
above, it is still plausible

that ZAXF2
(T ) is the zeta function of an actual K3 surface over F2. Indeed, the main

result of Taelman [48] and the computational evidence in [31] suggest that if AX
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has point counts resembling a K3 surface then ZAX
(T ) should be equal to the zeta

function of an actual K3 surface over k. Therefore, the results of this section can
be taken as evidence that point-counting on a K3 category cannot alone distinguish
geometric K3 categories from nongeometric ones.

4.1. A special cubic fourfold over Q with no (twisted) admissible mark-
ings. Let d be a positive integer congruent to 0 or 2 modulo 6. We say that d is an
admissible discriminant if d satisfies the condition

4 - d, 9 - d, and p - d for any odd prime p ≡ 2 mod 3 (??).

We say that d is a twisted admissible discriminant if there is some integer k such
that

d = k2d0 for some admissible discriminant d0 (??′).

For a cubic fourfold X over the complex numbers, Huybrechts [29] has shown,
following closely-related work of Addington and Thomas [4], that CH2(X) con-
tains a primitive rank 2 sublattice K of (twisted) admissible discriminant d with
c1(OX(1))2 ∈ K if and only if AX ∼= Db(S, α) for some twisted K3 surface (S, α).
We in turn say that the primitive sublattice K is a (twisted) admissible sublattice.

Proposition 4.2. If X is a cubic fourfold X/C with rk(CH2(X) = 3 and X con-
tains a Veronese surface V and a cubic scroll T such that T.V = 2, then AX is
nongeometric; that is, AX is not equivalent to the derived category of a (twisted) K3
surface.

Proof. Let h = c1(OX(1)). By the hypotheses, the cubic fourfold X contains a
cubic scroll, so X has a rank 2 marking of discriminant 12, and a discriminant 20
marking as well because it contains a Veronese [24]. Since T.V = 2, the lattice
〈h2, T, V 〉 ⊂ CH2(X) has Gram matrix3 4 3

4 12 2
3 2 7


We note that in [50, §8], Yang and Yu give a classification of rank 3 positive definite
lattices M that can contain (twisted) admissible primitive sublattices. As a conse-
quence of their classification, M has no admissible sublattices. We wish to show the
stronger claim that M has no twisted admissible primitive sublattices. Indeed, the
discriminant of any rank 2 primitive sublattice containing h2 of the rank 3 lattice
above is generically of the form d = 12y(y − z) + 20z2 for integers y and z and so
cannot be admissible (since 4 | d), and further more cannot be twisted admissible: if
d were twisted admissible, then d/4 = 3y(y− z) + 5z2 would need to be of the form
s2d0 for some admissible d0, so in particular we would need d/4 ≡ 0 or 2 modulo 6,
but 3y(y − z) + 5z2 never represents these congruence classes. �

Proof of Theorem 4.1. Let X/Z be the cubic fourfold with equation

−27195x
3
1+99309x

2
1x2+52143x

2
1x3−19299x

2
1x4+17717x

2
1x5−166089x

2
1x6+280203x1x

2
2+42138x1x2x3−24486x1x2x4+335080x1x2x5

+36287x1x2x6−52038x1x
2
3+42628x1x3x4−91243x1x3x5+76026x1x3x6+74191x1x

2
4+105644x1x4x5−206488x1x4x6

−21765x1x
2
5−396946x1x5x6−145953x1x

2
6+153699x

3
2−17064x

2
2x3−12246x

2
2x4+317363x

2
2x5+202376x

2
2x6−45743x2x

2
3+76777x2x3x4

−160450x2x3x5 − 622x2x3x6 + 102045x2x
2
4 + 105638x2x4x5 − 206876x2x4x6 + 104046x2x

2
5 − 97682x2x5x6

+48677x2x
2
6+27090x

3
3+54944x

2
3x4−93628x

2
3x5−11594x

2
3x6+27854x3x

2
4−13462x3x4x5+97190x3x4x6−149681x3x

2
5−126562x3x5x6

+44296x3x
2
6+74191x

2
4x5+102045x

2
4x6+97089x4x

2
5−76364x4x5x6−194630x4x

2
6−52559x

3
5−376318x

2
5x6−296287x5x

2
6x1 = 0.

We wish to show that X = XQ has the properties (1) and (2) claimed in the
theorem.
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We first show that X contains surfaces T and V as in the statement of Proposi-
tion 4.2. The cubicX contains the cubic scroll T given by the simultaneous vanishing
of the 2× 2 minors of the matrix x5 x2 + x3 + x6

x5 + x6 x2 + x6

x3 + x4 + x6 x5

 ,

inside of the hyperplane x1 + x2 + x5 + x6 = 0. One also computes that X contains
the Veronese surface V given by the vanishing of the minors of the matrix x3 + x5 x1 + x2 + x4 x3 + x4

x1 + x2 + x4 x1 + x4 + x6 x3 + x6

x3 + x4 x3 + x6 x1 + x2 + x5 + x6


The Magma code [14] in the arXiv distribution of this article verifies these claims
and the claim that T.V = 2. We know now that rk CH2(XQ) ≥ 3.

We next verify using Magma that the reduction XF2 is smooth. Now, for any
` 6= 2, we can compute via the point counting algorithm of [7] that the primitive
Weil-polynomial f(t) = det(F ∗ − tId|H4

ét, pr(XF2 ,Q`(2))) is given by

f(t) = t22 − t21 + t20 − 3

2
t19 + t18 − 3

2
t17 +

3

2
t16 − t15 + 2t14

−2t13 +
3

2
t12 − 2t11 +

3

2
t10 − 2t9 + 2t8 − t7 +

3

2
t6 − 3

2
t5 + t4 − 3

2
t3 + t2 − t+ 1.

This Weil polynomial factors as f(t) = (t−1)2g(t) for an irreducible, noncyclotomic
polynomial of degree 20. It follows from the Tate conjecture for cubic fourfolds over
F2 ([7]) that rk CH2(X F2) = 3. By the specialization theorem for Chow groups [22],
cf. [1, §2], one has

3 = rk CH2(XF2
) ≥ rk CH2(XQ),

and in fact one has equality because we showed explicitly above the reverse equality.
It follows by Proposition 4.2 that XQ has no twisted associated K3 surfaces (over
C).

It remains to check the that point counts of the K3 category of XF2 are positive
and exhibit expected growth. It is enough to confirm these properties point counts
over F2k , k = 1, . . . , 4 ([31]). The K3 category of X has the point counts below for
the first eleven values of k:

k |AXF2
(F2k)|

1 7
2 13
3 85
4 273
5 1137
6 4081
7 16289
8. 64001
9 264001
10 1052673
11 4196353

Thus the point counts of AXF2
behave as in item (2) of the theorem statement. �



14 ASHER AUEL AND JACK PETOK

Remark 4.3. To find the example we provided above, we used our complete tabu-
lation of zeta functions of cubic fourfolds over F2 from [7] to find a cubic with the
desired algebraic and geometric rank of 3 and with discriminant 68 according to the
(conjectural) Artin-Tate formula for fourfolds [39]. We then verified that this cubic
X ′ over F2 contains a configuration of a Veronese and a cubic scroll intersecting in
two points. Finally, we found a smooth lift X/Q containing the a Veronese and a
scroll in the right configuration by first lifting the Veronese and scroll from F2 first,
and then searching for lifts of X ′ containing these two surfaces.

Remark 4.4. (1) Since one expects something like Proposition 4.2 to hold in
positive characteristic, it is conceivable that the cubic fourfolds we found in
Theorem 4.1 have nongeometric K3 category over F2.

(2) The point counts of AXF2
appear to give a K3 surface; indeed, they give rise

to a Weil polynomial that is on a proposed list by Kedlaya and Sutherland
of all possible Weil polynomials of K3 surfaces over F2 [31, Computation
3(c)]. This suggests that nongeometric K3 categories may have point counts
identical to those of K3 surfaces, or that additional restrictions on the Weil
polynomials of K3 surfaces are needed.
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